Exercise 5

Consider a rigid structure composed of point particles joined by massless rods. The particles are numbered 1, 2, 3, \ldots, N, and the particle masses are \(m_v \) \((v = 1, 2, \ldots, N)\). The locations of the particles with respect to the center of mass are \(R_v \). The entire structure rotates on an axis passing through the center of mass with an angular velocity \(W \). Show that the angular momentum with respect to the center of mass is

\[
L = \sum_v m_v [R_v \times (W \times R_v)]
\]

Then show that the latter expression may be rewritten as

\[
L = [\Phi \cdot W]
\]

where

\[
\Phi = \sum_v m_v \{(R_v \cdot R_v)\delta - R_v R_v\}
\]

is the moment-of-inertia tensor.