Exercise 6

The kinetic energy of rotation of the rigid structure in Exercise 5 is

\[K = \sum_v \frac{1}{2} m_v \left(\dot{R}_v \cdot \dot{R}_v \right) \]

where \(\dot{R}_v = [W \times R_v] \) is the velocity of the \(v \)-th particle. Show that

\[K = \frac{1}{2} (\Phi : WW) \]

Solution

Start off by substituting \(W \times R_v \) for \(\dot{R}_v \) in the expression for \(K \).

\[K = \sum_{v=1}^N \frac{1}{2} m_v \left(\dot{R}_v \cdot [W \times R_v] \right) \]

The point of only substituting it into the second \(\dot{R}_v \) is so that we can use the following triple-product vector identity.

\[A \cdot (B \times C) = B \cdot (C \times A) \]

Doing so gives us

\[K = \sum_{v=1}^N \frac{1}{2} m_v \left(W \cdot [R_v \times \dot{R}_v] \right). \]

Replace \(\dot{R}_v \) with \(W \times R_v \).

\[K = \sum_{v=1}^N \frac{1}{2} m_v \left(W \cdot [R_v \times (W \times R_v)] \right). \]

Now make use of the BAC-CAB vector identity.

\[A \times [B \times C] = B(A \cdot C) - C(A \cdot B) \]

The equation becomes

\[K = \sum_{v=1}^N \frac{1}{2} m_v \left(W \cdot [W(R_v \cdot R_v) - R_v(R_v \cdot W)] \right). \]

Move \(W \) to the right side and bring \(1/2 \) out of the sum.

\[K = \frac{1}{2} \sum_{v=1}^N m_v \left([R_v \cdot R_v]W - R_v(R_v \cdot W) \right) \cdot W \]
We can write W in terms of the unit tensor δ as $\delta \cdot W$. This will be shown now.

$$\delta \cdot W = \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \delta_i \delta_j \delta_{ij} \right) \cdot \left(\sum_{k=1}^{3} \delta_k W_k \right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \delta_i (\delta_j \cdot \delta_k) \delta_{ij} W_k = \sum_{i=1}^{3} \sum_{j=1}^{3} \delta_j (\delta_j \cdot \delta_k) W_k$$

$$= \sum_{j=1}^{3} \sum_{k=1}^{3} \delta_j \delta_{jk} W_k$$

$$= \sum_{k=1}^{3} \delta_k W_k$$

$$= W$$

Hence,

$$K = \frac{1}{2} \sum_{v=1}^{N} m_v \left(\left(\left(R_v \cdot R_v \right) \delta \cdot W \right) - R_v \left(R_v \cdot W \right) \right) \cdot W \right)$$

Factor out W.

$$K = \frac{1}{2} \sum_{v=1}^{N} m_v \left(\left(\left(R_v \cdot R_v \right) \delta - R_v R_v \right) \cdot W \right) \cdot W \right)$$

Bring m_v and the sum inside the two dot products.

$$K = \frac{1}{2} \left(\sum_{v=1}^{N} m_v \left(\left(R_v \cdot R_v \right) \delta - R_v R_v \right) \cdot W \right) \cdot W \right)$$

Note that

$$\Phi = \sum_{v=1}^{N} m_v \left(\left(R_v \cdot R_v \right) \delta - R_v R_v \right)$$

is the moment-of-inertia tensor, so the expression for the kinetic energy simplifies to

$$K = \frac{1}{2} (\Phi \cdot W) \cdot W \right)$$

This can be written with the double dot product by considering the dyadic product WW.

Therefore,

$$K = \frac{1}{2} (\Phi : WW)$$

www.stemjock.com