Problem 1D.2

Force on a surface of arbitrary orientation.\(^5\) (Fig. 1D.2) Consider the material within an element of volume \(OABC\) that is in a state of equilibrium, so that the sum of the forces acting on the triangular faces \(\triangle OBC\), \(\triangle OCA\), \(\triangle OAB\), and \(\triangle ABC\) must be zero. Let the area of \(\triangle ABC\) be \(dS\), and the force per unit area acting from the minus to the plus side of \(dS\) be the vector \(\pi_n\). Show that \(\pi_n = [n \cdot \pi]\).

(a) Show that the area of \(\triangle OBC\) is the same as the area of the projection \(\triangle ABC\) on the \(yz\)-plane; this is \((n \cdot \delta_x)dS\). Write similar expressions for the areas of \(\triangle OCA\) and \(\triangle OAB\).

(b) Show that according to Table 1.2-1 the force per unit area on \(\triangle OBC\) is \(\delta_x \pi_{xx} + \delta_y \pi_{xy} + \delta_z \pi_{xz}\). Write similar force expressions for \(\triangle OCA\) and \(\triangle OAB\).

(c) Show that the force balance for the volume element \(OABC\) gives

\[
\pi_n = \sum_i \sum_j (n \cdot \delta_i)(\delta_j \pi_{ij}) = [n \cdot \sum_i \sum_j \delta_i \delta_j \pi_{ij}]
\]

in which the indices \(i, j\) take on the values \(x, y, z\). The double sum in the last expression is the stress tensor \(\pi\) written as a sum of products of unit dyads and components.

Solution

www.stemjock.com
Part (a)

The trick here is to treat area as a vector—let the magnitude be the area and let the direction be the unit vector perpendicular to the area. Taking the dot product of the area vector of \(\triangle ABC \) with a unit vector in some direction will give us the projection of the area of \(\triangle ABC \) onto the plane that that unit vector is perpendicular to.

Figure 1: This figure shows the dimensions of volume \(OABC \) and the position vectors, \(r_1 \) and \(r_2 \).

Face \(ABC \) is a triangle with sides \(\sqrt{a^2 + b^2} \), \(\sqrt{b^2 + c^2} \), and \(\sqrt{a^2 + c^2} \), so the area of it is given by Hero’s formula,

\[
A_{ABC} = \sqrt{s(s - \sqrt{a^2 + b^2})(s - \sqrt{b^2 + c^2})(s - \sqrt{a^2 + c^2})},
\]

where \(s \) is the sum of the sides divided by 2. Simplifying the result, we obtain

\[
A_{ABC} = \frac{1}{2} \sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}.
\]

To obtain a unit vector normal to \(\triangle ABC \), write expressions for the vectors \(r_1 \) and \(r_2 \) in Figure 1 by considering the position vectors of the points \(A, B, \) and \(C \).

\[
r_1 = \langle a, 0, 0 \rangle - \langle 0, 0, c \rangle = \langle a, 0, -c \rangle
\]

\[
r_2 = \langle 0, b, 0 \rangle - \langle 0, 0, c \rangle = \langle 0, b, -c \rangle
\]

Take the cross product of these vectors to find a vector perpendicular to \(ABC \).

\[
r_1 \times r_2 = \begin{vmatrix}
\delta_x & \delta_y & \delta_z \\
a & 0 & -c \\
0 & b & -c
\end{vmatrix} = bc\delta_x + ac\delta_y + ab\delta_z
\]

To make this a unit vector \(n \), divide the vector by its magnitude.

\[
n = \frac{bc\delta_x + ac\delta_y + ab\delta_z}{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}
\]
Thus, the vector representing the area of $\triangle ABC$ is

$$A_{ABC} = \frac{1}{2} \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \frac{bc\delta_x + ac\delta_y + ab\delta_z}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} = \frac{1}{2} (bc, ac, ab).$$

The unit vector perpendicular to $\triangle OBC$ is δ_x, so the area of $\triangle OBC$ is given by

$$A_{OBC} = A_{ABC} \cdot \delta_x = \frac{1}{2} bc.$$

The unit vector perpendicular to $\triangle OAC$ is δ_y, so the area of $\triangle OAC$ is given by

$$A_{OAC} = A_{ABC} \cdot \delta_y = \frac{1}{2} ac.$$

The unit vector perpendicular to $\triangle OAB$ is δ_z, so the area of $\triangle OAB$ is given by

$$A_{OAB} = A_{ABC} \cdot \delta_z = \frac{1}{2} ab.$$

As faces OBC, OAC, and OAB are triangles, these results are indeed correct.

Part (b)

The molecular momentum stress tensor π gives us the force per unit area.

$$\pi = \delta_x \delta_x \pi_{xx} + \delta_x \delta_y \pi_{xy} + \delta_x \delta_z \pi_{xz} + \delta_y \delta_x \pi_{yx} + \delta_y \delta_y \pi_{yy} + \delta_y \delta_z \pi_{yz} + \delta_z \delta_x \pi_{zx} + \delta_z \delta_y \pi_{zy} + \delta_z \delta_z \pi_{zz}$$

The unit vector perpendicular to $\triangle OBC$ is δ_x, so the force per unit area on $\triangle OBC$ is $\pi_x = \delta_x \cdot \pi$.

$$\delta_x \cdot \pi = \delta_x \cdot (\delta_x \delta_x \pi_{xx} + \delta_x \delta_y \pi_{xy} + \delta_x \delta_z \pi_{xz} + \delta_y \delta_x \pi_{yx} + \delta_y \delta_y \pi_{yy} + \delta_y \delta_z \pi_{yz} + \delta_z \delta_x \pi_{zx} + \delta_z \delta_y \pi_{zy} + \delta_z \delta_z \pi_{zz})$$

$$= (\delta_x \cdot \delta_x) \delta_x \pi_{xx} + (\delta_x \cdot \delta_y) \delta_y \pi_{xy} + (\delta_x \cdot \delta_z) \delta_z \pi_{xz} + (\delta_y \cdot \delta_x) \delta_x \pi_{yx} + (\delta_y \cdot \delta_y) \delta_y \pi_{yy} + (\delta_y \cdot \delta_z) \delta_z \pi_{yz} + (\delta_z \cdot \delta_x) \delta_x \pi_{zx} + (\delta_z \cdot \delta_y) \delta_y \pi_{zy} + (\delta_z \cdot \delta_z) \delta_z \pi_{zz}$$

$$= \delta_x \pi_{xx} + \delta_y \pi_{xy} + \delta_z \pi_{xz}$$

The unit vector perpendicular to $\triangle OAC$ is δ_y, so the force per unit area on $\triangle OAC$ is $\pi_y = \delta_y \cdot \pi$.

$$\delta_y \cdot \pi = \delta_y \cdot (\delta_x \delta_x \pi_{xx} + \delta_x \delta_y \pi_{xy} + \delta_x \delta_z \pi_{xz} + \delta_y \delta_x \pi_{yx} + \delta_y \delta_y \pi_{yy} + \delta_y \delta_z \pi_{yz} + \delta_z \delta_x \pi_{zx} + \delta_z \delta_y \pi_{zy} + \delta_z \delta_z \pi_{zz})$$

$$= (\delta_y \cdot \delta_x) \delta_x \pi_{xx} + (\delta_y \cdot \delta_y) \delta_y \pi_{yy} + (\delta_y \cdot \delta_z) \delta_z \pi_{yz} + (\delta_x \cdot \delta_x) \delta_x \pi_{yx} + (\delta_x \cdot \delta_y) \delta_y \pi_{xy} + (\delta_x \cdot \delta_z) \delta_z \pi_{xz} + (\delta_z \cdot \delta_x) \delta_x \pi_{zx} + (\delta_z \cdot \delta_y) \delta_y \pi_{zy} + (\delta_z \cdot \delta_z) \delta_z \pi_{zz}$$

$$= \delta_x \pi_{yx} + \delta_y \pi_{yy} + \delta_z \pi_{yz}$$

www.stemjock.com
The unit vector perpendicular to $\triangle OAB$ is δ_z, so the force per unit area on $\triangle OAB$ is $\pi_z = \delta_z \cdot \pi$.

$$\delta_z \cdot \pi = \delta_z \cdot (\delta_x \delta_x \pi_{xx} + \delta_x \delta_y \pi_{xy} + \delta_x \delta_z \pi_{xz} + \delta_y \delta_x \pi_{yx} + \delta_y \delta_y \pi_{yy} + \delta_y \delta_z \pi_{yz} + \delta_z \delta_x \pi_{zx} + \delta_z \delta_y \pi_{zy} + \delta_z \delta_z \pi_{zz})$$

$$= (\delta_x \cdot \delta_x) \delta_x \pi_{xx} + (\delta_x \cdot \delta_y) \delta_y \pi_{xy} + (\delta_x \cdot \delta_z) \delta_z \pi_{xz} + (\delta_y \cdot \delta_x) \delta_x \pi_{yx} + (\delta_y \cdot \delta_y) \delta_y \pi_{yy} + (\delta_y \cdot \delta_z) \delta_z \pi_{yz} + (\delta_z \cdot \delta_x) \delta_x \pi_{zx} + (\delta_z \cdot \delta_y) \delta_y \pi_{zy} + (\delta_z \cdot \delta_z) \delta_z \pi_{zz}$$

$$= \delta_x \pi_{xx} + \delta_y \pi_{xy} + \delta_z \pi_{zz}$$

Do note that the order we take the dot product is important. The reason we choose to do $\delta_z \cdot \pi$ rather than $\pi \cdot \delta_z$ is so that the first index of π becomes x rather than the second index. This is because the first index indicates what direction is perpendicular to the area. The second one indicates the direction the force is acting. In part (a) it didn’t matter whether we did $A_{ABC} \cdot \delta_x$ or $\delta_x \cdot A_{ABC}$ since δ_x and A_{ABC} were both vectors. Here, though, π is a second-order tensor, so the dot product is not commutative.

Part (c)

![Diagram](image)

Figure 2: Fig. 1D.2 with added outward normal unit vectors for faces OCB, OAB, and OAC.

According to Newton’s second law, if the volume element $OABC$ is in equilibrium, then the sum of the forces acting on its faces must be equal to the zero vector.

$$\sum_i F_i = 0$$

There are four different forces to consider: those acting on $\triangle OBC$ in the x-direction, those acting on $\triangle OAC$ in the y-direction, those acting on $\triangle OAB$ in the z-direction, and those acting on $\triangle ABC$ in the n-direction. Since the outward normal vectors of faces OBC, OAC, and OAB point in the negative directions, there are minus signs in front of these forces.

$$-F_x - F_y - F_z + F_n = 0$$

www.stemjock.com
Since the molecular momentum stress tensor π represents force per unit area, we can get the force by multiplying it by the area.

$$-\pi_x A_{OBC} - \pi_y A_{OAC} - \pi_z A_{OAB} + \pi_n \cdot A_{ABC} = 0$$

Use the formulas for the areas of the triangles from part (a).

$$-\pi_x \left(\frac{1}{2} bc \right) - \pi_y \left(\frac{1}{2} ac \right) - \pi_z \left(\frac{1}{2} ab \right) + \pi_n \left(\frac{1}{2} \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \right) = 0$$

Use the expressions in part (b) for π_x, π_y, and π_z.

$$-\delta_x \cdot \pi \left(\frac{1}{2} bc \right) - \delta_y \cdot \pi \left(\frac{1}{2} ac \right) - \delta_z \cdot \pi \left(\frac{1}{2} ab \right) + \pi_n \left(\frac{1}{2} \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \right) = 0$$

Use the expressions in part (b) for $\delta_x \cdot \pi$, $\delta_y \cdot \pi$, and $\delta_z \cdot \pi$.

$$- (\delta_x \pi_{xx} + \delta_y \pi_{xy} + \delta_z \pi_{xz}) \left(\frac{1}{2} bc \right) - (\delta_x \pi_{yx} + \delta_y \pi_{yy} + \delta_z \pi_{yz}) \left(\frac{1}{2} ac \right) - (\delta_x \pi_{zx} + \delta_y \pi_{zy} + \delta_z \pi_{zz}) \left(\frac{1}{2} ab \right) + \pi_n \left(\frac{1}{2} \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \right) = 0$$

Multiply both sides by 2 and factor the unit vectors.

$$- \delta_x (bc \pi_{xx} + ac \pi_{yx} + ab \pi_{xz}) - \delta_y (bc \pi_{xy} + ac \pi_{yy} + ab \pi_{zy}) - \delta_z (bc \pi_{xz} + ac \pi_{zy} + ab \pi_{zz}) + \pi_n \sqrt{b^2c^2 + a^2c^2 + a^2b^2} = 0$$

Solve this equation for π_n.

$$\pi_n = \frac{\delta_x (bc \pi_{xx} + ac \pi_{yx} + ab \pi_{xz}) + \delta_y (bc \pi_{xy} + ac \pi_{yy} + ab \pi_{zy}) + \delta_z (bc \pi_{xz} + ac \pi_{zy} + ab \pi_{zz})}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}}$$

Distribute the square root term.

$$\pi_n = \delta_x \left(\frac{bc}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{xx} + \frac{ac}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{yx} + \frac{ab}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{xz} \right)$$

$$+ \delta_y \left(\frac{bc}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{xy} + \frac{ac}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{yy} + \frac{ab}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{yz} \right)$$

$$+ \delta_z \left(\frac{bc}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{zx} + \frac{ac}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{zy} + \frac{ab}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \pi_{zz} \right)$$

From part (a) we have

$$n = \frac{bc \delta_x + ac \delta_y + ab \delta_z}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}},$$

so

$$\pi_n = \delta_x (n_x \pi_{xx} + n_y \pi_{yx} + n_z \pi_{xz}) + \delta_y (n_x \pi_{xy} + n_y \pi_{yy} + n_z \pi_{zy}) + \delta_z (n_x \pi_{xz} + n_y \pi_{zy} + n_z \pi_{zz}).$$

This can be written compactly using sums.

$$\pi_n = \delta_x \left(\sum_{i=1}^{3} n_i \pi_{ix} \right) + \delta_y \left(\sum_{i=1}^{3} n_i \pi_{iy} \right) + \delta_z \left(\sum_{i=1}^{3} n_i \pi_{iz} \right)$$

www.stemjock.com
Factor out n_i and the sum.

$$\pi_n = \sum_{i=1}^{3} n_i (\delta_x \pi_{ix} + \delta_y \pi_{iy} + \delta_z \pi_{iz})$$

This can be written even more compactly by introducing another sum.

$$\pi_n = \sum_{i=1}^{3} n_i \left(\sum_{j=1}^{3} \delta_j \pi_{ij} \right)$$

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} n_i \delta_j \pi_{ij}$$

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} (\mathbf{n} \cdot \delta_i) \delta_j \pi_{ij}$$

$$= \mathbf{n} \cdot \sum_{i=1}^{3} \sum_{j=1}^{3} \delta_i \delta_j \pi_{ij}$$

Therefore,

$$\pi_n = \mathbf{n} \cdot \pi.$$