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Problem 3B.3

Laminar flow in a square duct.

(a) A straight duct extends in the z direction for a length L and has a square cross section,
bordered by the lines x = ±B and y = ±B. A colleague has told you that the velocity
distribution is given by

vz =
(P0 −PL)B

2

4µL

[
1−

( x
B

)2] [
1−

( y
B

)2]
(3B.3-1)

Since this colleague has occasionally given you wrong advice in the past, you feel obliged to
check the result. Does it satisfy the relevant boundary conditions and the relevant
differential equation?

(b) According to the review article by Berker,3 the mass rate of flow in a square duct is given by

w =
0.563(P0 −PL)B

4ρ

µL
(3B.3-2)

Compare the coefficient in this expression with the coefficient that one obtains from Eq.
3B.3-1.

Solution

Part (a)

We assume that the fluid flows only in the z-direction and that the velocity varies as a function of
x and y.

v = vz(x, y)ẑ

If we assume the fluid does not slip on the walls, then it has the wall’s velocity at x = ±B and
y = ±B.

Boundary Condition 1: vz(−B, y) = 0

Boundary Condition 2: vz(B, y) = 0

Boundary Condition 3: vz(x,−B) = 0

Boundary Condition 4: vz(x,B) = 0

The equation of continuity results by considering a mass balance over a volume element that the
fluid is flowing through. Assuming the fluid density ρ is constant, the equation simplifies to

∇ · v = 0. (1)

The equation of motion results by considering a momentum balance over a volume element that
the fluid is flowing through. Assuming the fluid viscosity µ is also constant, the equation
simplifies to the Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg (2)

3R. Berker, Handbuch der Physik, Vol. VIII/2, Springer, Berlin (1963); see pp. 67–77 for laminar flow in conduits
of noncircular cross sections. See also W. E. Stewart, AIChE Journal, 8, 425–428 (1962).
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As this is a vector equation, it actually represents three scalar equations—one for each variable in
the chosen coordinate system. Using Cartesian coordinates is the appropriate choice for this
problem, so equations (1) and (2) will be used in (x, y, z). From Appendix B.4 on page 846, the
continuity equation becomes

∂vx
∂x︸︷︷︸
= 0

+
∂vy
∂y︸︷︷︸
= 0

+
∂vz
∂z︸︷︷︸
= 0

= 0,

which doesn’t tell us anything. From Appendix B.6 on page 848, the Navier-Stokes equation
yields the following three scalar equations in cylindrical coordinates.

ρ

(
∂vx
∂t︸︷︷︸
= 0

+ vx
∂vx
∂x︸ ︷︷ ︸

= 0

+ vy
∂vx
∂y︸ ︷︷ ︸

= 0

+ vz
∂vx
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂x
+ µ

[
∂2vx
∂x2︸ ︷︷ ︸
= 0

+
∂2vx
∂y2︸ ︷︷ ︸
= 0

+
∂2vx
∂z2︸ ︷︷ ︸
= 0

]
+ ρgx

ρ

(
∂vy
∂t︸︷︷︸
= 0

+ vx
∂vy
∂x︸ ︷︷ ︸

= 0

+ vy
∂vy
∂y︸ ︷︷ ︸

= 0

+ vz
∂vy
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂y
+ µ

[
∂2vy
∂x2︸ ︷︷ ︸
= 0

+
∂2vy
∂y2︸ ︷︷ ︸
= 0

+
∂2vy
∂z2︸ ︷︷ ︸
= 0

]
+ ρgy

ρ

(
∂vz
∂t︸︷︷︸
= 0

+ vx
∂vz
∂x︸ ︷︷ ︸

= 0

+ vy
∂vz
∂y︸ ︷︷ ︸

= 0

+ vz
∂vz
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂z
+ µ

[
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2︸ ︷︷ ︸
= 0

]
+ ρgz

The relevant equation for the velocity is the z-equation, which has simplified considerably from
the assumption that v = vz(x, y)ẑ.

0 = −∂p
∂z

+ µ

[
∂2vz
∂x2

+
∂2vz
∂y2

]
+ ρgz

The sum of −∂p/∂z and ρgz is the modified pressure gradient across the duct.

0 = −(PL −P0)

L− 0
+ µ

[
∂2vz
∂x2

+
∂2vz
∂y2

]
The velocity distribution thus satisfies the following PDE.

∂2vz
∂x2

+
∂2vz
∂y2

=
(PL −P0)

µL

We want to check whether the colleague’s solution,

vz =
(P0 −PL)B

2

4µL

[
1−

( x
B

)2] [
1−

( y
B

)2]
,

satisfies it. Find the second derivatives of vz with respect to x and y.

∂vz
∂x

=
(P0 −PL)B

2

4µL

(
− 2x

B2

)[
1−

( y
B

)2]
∂2vz
∂x2

=
(P0 −PL)B

2

4µL

(
− 2

B2

)[
1−

( y
B

)2]
∂vz
∂y

=
(P0 −PL)B

2

4µL

[
1−

( x
B

)2](
− 2y

B2

)
∂2vz
∂y2

=
(P0 −PL)B

2

4µL

[
1−

( x
B

)2](
− 2

B2

)
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Adding them together, we have

∂2vz
∂x2

+
∂2vz
∂y2

=
(P0 −PL)B

2

4µL

(
− 2

B2

)[
1−

( x
B

)2
+ 1−

( y
B

)2]
=

(PL −P0)

µL

(
1

2

)[
2−

( x
B

)2
−
( y
B

)2]
6= (PL −P0)

µL
,

so the colleague’s solution does not satisfy the PDE. Plugging in x = ±B and y = ±B, we find
that it does satisfy the boundary conditions, though.

Part (b)

The volumetric flow rate is given by the integral of the velocity field over the cross-sectional area
the fluid is flowing through.

dV

dt
=

¨
vz dA

To get the mass flow rate, multiply both sides by the fluid density ρ.

ρ
dV

dt
= ρ

¨
vz(x, y) dx dy

Since ρ is assumed to be constant, it can be brought inside the derivative on the left side. Density
times volume gives mass.

dm

dt
= ρ

¨
vz(x, y) dx dy

= ρ

ˆ B

−B

ˆ B

−B

(P0 −PL)B
2

4µL

[
1−

( x
B

)2] [
1−

( y
B

)2]
dx dy

=
(P0 −PL)B

2ρ

4µL

[ˆ B

−B

(
1− x2

B2

)
dx

] [ˆ B

−B

(
1− y2

B2

)
dy

]
=

(P0 −PL)B
2ρ

4µL

(
4B

3

)(
4B

3

)
Using the colleague’s solution then, we obtain the following mass flow rate. (Let w = dm/dt.)

w =
4(P0 −PL)B

4ρ

9µL

≈ 0.444(P0 −PL)B
4ρ

µL
.

Calculate the percent difference of this coefficient compared to the one obtained by Berker.

0.444− 0.563

0.563
× 100% ≈ −21%

We find that the colleague’s solution predicts a mass flow rate that is about 21% less than the one
predicted by Berker.1

1In my humble opinion this is how much the colleague’s next paycheck deserves to be cut.
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Part (c)

The aim here is to solve the governing equation for the velocity distribution,

∂2vz
∂x2

+
∂2vz
∂y2

=
(PL −P0)

µL
, (3)

subject to the reformulated boundary conditions.

vz(0, y) = 0

vz(2B, y) = 0

vz(x, 0) = 0

vz(x, 2B) = 0

The origin of the coordinate system has been translated to the lower left corner of the square duct
so that the problem is easier to solve. Since equation (3) is linear and inhomogeneous with
homogeneous boundary conditions, the method of eigenfunction expansion can be applied to solve
for vz. Consider the eigenvalue problem of the operator involving the spatial variables(

∂2

∂x2
+

∂2

∂y2

)
φ = λφ (4)

with the same boundary conditions,

φ(0, y) = 0

φ(2B, y) = 0

φ(x, 0) = 0

φ(x, 2B) = 0.

Equation (4) is known as the Helmholtz equation; since it is linear and homogeneous, we can use
the method of separation of variables to solve it. Assume a product solution of the form
φ = X(x)Y (y) and substitute it into the equation

X ′′Y +XY ′′ = λXY

and the boundary conditions.

φ(0, y) = 0 → X(0)Y (y) = 0 → X(0) = 0

φ(2B, y) = 0 → X(2B)Y (y) = 0 → X(2B) = 0

φ(x, 0) = 0 → X(x)Y (0) = 0 → Y (0) = 0

φ(x, 2B) = 0 → X(x)Y (2B) = 0 → Y (2B) = 0 .

Now separate variables in the PDE: divide both sides by XY and bring the functions of y to the
right side.

X ′′

X
+
Y ′′

Y
= λ → X ′′

X
= λ− Y ′′

Y

The only way a function of x can equal a function of y is if both are equal to a constant η.

X ′′

X
= λ− Y ′′

Y
= η
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The ODE in X will be solved first to find the values of η for which there are solutions. Suppose
first that η is positive: η = α2. Then

X ′′

X
= α2

Multiply both sides by X.
X ′′ = α2X

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshαx+ C2 sinhαx

Apply the boundary conditions here to find C1 and C2.

X(0) = C1 = 0

X(2B) = C1 cosh 2αB + C2 sinh 2αB = 0

Since C1 = 0, the second equation reduces to C2 sinh 2αB = 0. Hyperbolic sine is not oscillatory,
so C2 = 0. The trivial solution is obtained, which means there are no positive values for η.
Secondly, suppose η = 0. Then

X ′′

X
= 0

Multiply both sides by X.
X ′′ = 0

The general solution is obtained by integrating both sides with respect to x twice.

X(x) = C3x+ C4

Apply the boundary conditions to determine C3 and C4.

X(0) = C4 = 0

X(2B) = 2C3B + C4 = 0

Solving this system of equations yields C3 = 0 and C4 = 0, resulting in the trivial solution, so η is
not zero. Thirdly, suppose η is negative: η = −β2. Then

X ′′

X
= −β2

Multiply both sides by X.
X ′′ = −β2X

The general solution can be written in terms of sine and cosine.

X(x) = C5 cosβx+ C6 sinβx

Apply the boundary conditions here to find C5 and C6.

X(0) = C5 = 0

X(2B) = C5 cos 2βB + C6 sin 2βB = 0
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Since C5 = 0, the second equation reduces to C6 sin 2βB = 0. To avoid getting the trivial
solution, we insist that C6 6= 0.

sin 2βB = 0

2βB = nπ, n = 1, 2, . . .

βn =
nπ

2B
, n = 1, 2, . . .

Consequently, the function for X(x) is

X(x) = C6 sinβx → Xn(x) = sin
nπx

2B
, n = 1, 2, . . . .

Now we solve the related ODE for Y (y).

λ− Y ′′

Y
= −β2

Solve this equation for Y ′′.
Y ′′ = (β2 + λ)Y

If λ is zero or positive, then the general solution for Y is written in terms of hyperbolic sine and
hyperbolic cosine, and the trivial solution will result as before for X. Suppose then that λ is
negative: λ = −γ2.

Y ′′ = (β2 − γ2)Y
= −(γ2 − β2)Y

The general solution is written in terms of sine and cosine.

Y (y) = C7 cos
√
γ2 − β2y + C8 sin

√
γ2 − β2y

Apply the boundary conditions here to determine C7 and C8.

Y (0) = C7 = 0

Y (2B) = C7 cos 2
√
γ2 − β2B + C8 sin 2

√
γ2 − β2B = 0

The second equation reduces to C8 sin 2
√
γ2 − β2B = 0. To avoid getting the trivial solution, we

insist that C8 6= 0.

sin 2
√
γ2 − β2B = 0

2
√
γ2 − β2B = mπ, m = 1, 2, . . .

γ2 − β2 =
(mπ
2B

)2
γ2 = β2 +

(mπ
2B

)2
γmn =

√
n2π2

4B2
+
m2π2

4B2

=
π

2B

√
n2 +m2
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Consequently, the function for Y (y) is

Y (y) = C8 sin
√
γ2 − β2y → Ym(y) = sin

mπy

2B
, m = 1, 2, . . . .

Thus, the eigenvalues are

λmn = −γ2mn = − π2

4B2
(n2 +m2),

m = 1, 2, . . .

n = 1, 2, . . .
,

and the eigenfunctions associated with them are

φmn(x, y) = sin
nπx

2B
sin

mπy

2B
,

m = 1, 2, . . .

n = 1, 2, . . .
.

The eigenfunctions of the Helmholtz equation form a complete set, so the unknown function
vz(x, y) can be expanded in terms of them.

vz(x, y) =
∞∑
m=1

∞∑
n=1

Amn sin
nπx

2B
sin

mπy

2B

To determine the coefficients Amn, substitute this formula for vz into equation (3).(
∂2

∂x2
+

∂2

∂y2

) ∞∑
m=1

∞∑
n=1

Amn sin
nπx

2B
sin

mπy

2B
=

(PL −P0)

µL

Provided that vz and its first derivatives with respect to x and y are continuous, the series can be
differentiated term-by-term.

∞∑
m=1

∞∑
n=1

Amn

(
∂2

∂x2
+

∂2

∂y2

)
sin

nπx

2B
sin

mπy

2B
=

(PL −P0)

µL

The operator in parentheses applied to the eigenfunction is just λmn times the eigenfunction.

∞∑
m=1

∞∑
n=1

Amnλmn sin
nπx

2B
sin

mπy

2B
=

(PL −P0)

µL

The left side is technically a double series, but it can be thought of as a Fourier sine series in y.

∞∑
m=1

[ ∞∑
n=1

Amnλmn sin
nπx

2B

]
sin

mπy

2B
=

(PL −P0)

µL

To solve for the term in square brackets, multiply both sides by sin pπy
2B , where p is an integer,

∞∑
m=1

[ ∞∑
n=1

Amnλmn sin
nπx

2B

]
sin

mπy

2B
sin

pπy

2B
=

(PL −P0)

µL
sin

pπy

2B

and then integrate both sides with respect to y from 0 to 2B.

ˆ 2B

0

∞∑
m=1

[ ∞∑
n=1

Amnλmn sin
nπx

2B

]
sin

mπy

2B
sin

pπy

2B
dy =

ˆ 2B

0

(PL −P0)

µL
sin

pπy

2B
dy

www.stemjock.com
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Bring the constants in front of the integrals.

∞∑
m=1

[ ∞∑
n=1

Amnλmn sin
nπx

2B

] ˆ 2B

0
sin

mπy

2B
sin

pπy

2B
dy =

(PL −P0)

µL

ˆ 2B

0
sin

pπy

2B
dy

Because the sine functions are orthogonal, the integral on the left side is zero for m 6= p. As a
result, every term in the infinite series vanishes except for one: m = p.[ ∞∑

n=1

Amnλmn sin
nπx

2B

] ˆ 2B

0
sin2

mπy

2B
dy =

(PL −P0)

µL

ˆ 2B

0
sin

mπy

2B
dy

Evaluate the integrals.[ ∞∑
n=1

Amnλmn sin
nπx

2B

]
·B =

(PL −P0)

µL
· 2B
mπ

[1− (−1)m]

Divide both sides by B.

∞∑
n=1

Amnλmn sin
nπx

2B
=

(PL −P0)

µL
· 2

mπ
[1− (−1)m]

Use a similar procedure to get Amnλmn. Multiply both sides by sin qπx
2B ,where q is an integer,

∞∑
n=1

Amnλmn sin
nπx

2B
sin

qπx

2B
=

(PL −P0)

µL
· 2

mπ
[1− (−1)m] sin qπx

2B

and then integrate both sides with respect to x from 0 to 2B.

ˆ 2B

0

∞∑
n=1

Amnλmn sin
nπx

2B
sin

qπx

2B
dx =

ˆ 2B

0

(PL −P0)

µL
· 2

mπ
[1− (−1)m] sin qπx

2B
dx

Bring the constants in front of the integrals.

∞∑
n=1

Amnλmn

ˆ 2B

0
sin

nπx

2B
sin

qπx

2B
dx =

(PL −P0)

µL
· 2

mπ
[1− (−1)m]

ˆ 2B

0
sin

qπx

2B
dx

As explained before, only one term in the infinite series doesn’t vanish as a result of the
integration: n = q.

Amnλmn

ˆ 2B

0
sin2

nπx

2B
dx =

(PL −P0)

µL
· 2

mπ
[1− (−1)m]

ˆ 2B

0
sin

nπx

2B
dx

Evaluate the integrals.

Amnλmn ·B =
(PL −P0)

µL
· 2

mπ
[1− (−1)m] · 2B

nπ
[1− (−1)n]

Hence, the coefficients are

Amn =
4(PL −P0)

π2µL
· 1

mnλmn
[1− (−1)m][1− (−1)n].
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The velocity distribution is now known.

vz(x, y) =
∞∑
m=1

∞∑
n=1

4(PL −P0)

π2µL
· 1

mnλmn
[1− (−1)m][1− (−1)n] sin nπx

2B
sin

mπy

2B

Notice that if m is even or n is even, then the summand is zero. The result can thus be simplified
(that is, made to converge faster) by summing over the odd integers only. Let m = 2k − 1 and
n = 2l − 1 in the double series. Then 1− (−1)m = 1− (−1)n = 2.

vz(x, y) =
∞∑

2k−1=1

∞∑
2l−1=1

4(PL −P0)

π2µL
· 1

(2k − 1)(2l − 1)λ(2k−1)(2l−1)
(2)(2) sin

[
(2l − 1)πx

2B

]
sin

[
(2k − 1)πy

2B

]

=
16(PL −P0)

π2µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)λ(2k−1)(2l−1)
sin

[
(2l − 1)πx

2B

]
sin

[
(2k − 1)πy

2B

]

=
16(PL −P0)

π2µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)
(
− π2

4B2

)
[(2k − 1)2 + (2l − 1)2]

sin

[
(2l − 1)πx

2B

]
sin

[
(2k − 1)πy

2B

]

=
64(P0 −PL)B

2

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]
sin

[
(2l − 1)πx

2B

]
sin

[
(2k − 1)πy

2B

]
In the colleague’s coordinate system, x ∈ [−B,B] and y ∈ [−B,B], the velocity distribution is
therefore

vz(x, y) =
64(P0 −PL)B

2

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]

× sin

[
(2l − 1)π(x+B)

2B

]
sin

[
(2k − 1)π(y +B)

2B

]
.

Part (d)

Here the average velocity, maximum velocity, and mass flow rate for flow in a square duct will be
calculated. To find the average velocity, integrate the velocity distribution over the cross-sectional
area that the fluid flows through and then divide by that area.

〈vz〉 =
1

(2B)2

ˆ 2B

0

ˆ 2B

0

64(P0 −PL)B
2

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]

× sin

[
(2l − 1)πx

2B

]
sin

[
(2k − 1)πy

2B

]
dx dy

=
16(P0 −PL)

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]

×
{ˆ 2B

0
sin

[
(2l − 1)πx

2B

]
dx

}{ˆ 2B

0
sin

[
(2k − 1)πy

2B

]
dy

}
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〈vz〉 =
16(P0 −PL)

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]

[
4B

π(2l − 1)

] [
4B

π(2k − 1)

]

=
256(P0 −PL)B

2

π6µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)2(2l − 1)2[(2k − 1)2 + (2l − 1)2]

Taking the first 1,000 terms in each sum, the double series is approximately 0.527926652.
Therefore, the average velocity is approximately

〈vz〉 ≈
0.141(P0 −PL)B

2

µL
.

The maximum velocity occurs at the point furthest from the walls: vz,max = vz(B,B).

vz,max =
64(P0 −PL)B

2

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]
sin

[
(2l − 1)π

2

]
sin

[
(2k − 1)π

2

]

=
64(P0 −PL)B

2

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]
(−1)l+1(−1)k+1

Taking the first 1,000 terms in each sum, the double series is approximately 0.448516222.
Therefore, the maximum velocity is approximately

vz,max ≈
0.295(P0 −PL)B

2

µL
.

The mass flow rate is

w = ρ

ˆ 2B

0

ˆ 2B

0

64(P0 −PL)B
2

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]

× sin

[
(2l − 1)πx

2B

]
sin

[
(2k − 1)πy

2B

]
dx dy

=
64(P0 −PL)B

2ρ

π4µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)(2l − 1)[(2k − 1)2 + (2l − 1)2]

[
4B

π(2l − 1)

] [
4B

π(2k − 1)

]

=
1024(P0 −PL)B

4ρ

π6µL

∞∑
k=1

∞∑
l=1

1

(2k − 1)2(2l − 1)2[(2k − 1)2 + (2l − 1)2]
.

Taking the first 1,000 terms in each sum, the double series is approximately 0.527926652.
Therefore, the mass flow rate is approximately

w ≈ 0.562(P0 −PL)B
4ρ

µL
.
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