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Problem 3C.3

Deformation of a fluid line (Fig. 3C.3). A fluid is contained in the annular space between two
cylinders of radii κR and R. The inner cylinder is made to rotate with a constant angular velocity
of Ωi. Consider a line of fluid particles in the plane z = 0 extending from the inner cylinder to the
outer cylinder and initially located at θ = 0, normal to the two surfaces. How does this fluid line
deform into a curve θ(r, t)? What is the length, l, of the curve after N revolutions of the inner
cylinder? Use Eq. 3.6-32.

Answer:
l

R
=

ˆ 1

κ

√
1 +

16π2N2

[(1/κ)2 − 1]2ξ4
dξ

Solution

With the equation of motion the velocity distribution in the annular space can be determined.
The key relationship between the curve θ and the (angular) velocity is

dθ

dt
= ω

dθ

dt
=
v

r
.

Integrate both sides with respect to t,

θ =
v

r
t+ θ0,

assuming that the velocity is not a function of time. Since the line of fluid particles is initially
located at θ = 0, the constant of integration is zero.

θ =
v

r
t (1)
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Once the velocity is determined, θ will be known and then we can find the length of the curve by
calculating the arc length in polar coordinates. The fluid is assumed to flow only in the
θ-direction and vary only in the r-direction.

v = vθ(r)θ̂

If we assume the fluid does not slip on the walls, then it has the wall’s velocity at r = κR and
r = R.

Boundary Condition 1: vθ(κR) = ΩiκR

Boundary Condition 2: vθ(R) = 0

The equation of continuity results by considering a mass balance over a volume element that the
fluid is flowing through. Assuming the fluid density ρ is constant, the equation simplifies to

∇ · v = 0. (2)

The equation of motion results by considering a momentum balance over a volume element that
the fluid is flowing through. Assuming the fluid viscosity µ is also constant, the equation
simplifies to the Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg (3)

As this is a vector equation, it actually represents three scalar equations—one for each variable in
the chosen coordinate system. Using cylindrical coordinates is the appropriate choice for this
problem, so equations (2) and (3) will be used in (r, θ, z). From Appendix B.4 on page 846, the
continuity equation becomes

1

r

∂

∂r
(rvr)︸ ︷︷ ︸

= 0

+
1

r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+
∂vz
∂z︸︷︷︸
= 0

= 0,

which doesn’t tell us anything. From Appendix B.6 on page 848, the Navier-Stokes equation
yields the following three scalar equations in cylindrical coordinates.

ρ

(
∂vr
∂t︸︷︷︸
= 0

+ vr
∂vr
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vr
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vr
∂z︸ ︷︷ ︸

= 0

−
v2θ
r

)
= −∂p

∂r
+ µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
︸ ︷︷ ︸

= 0

+
1

r2
∂2vr
∂θ2︸ ︷︷ ︸

= 0

+
∂2vr
∂z2︸ ︷︷ ︸
= 0

− 2

r2
∂vθ
∂θ︸ ︷︷ ︸

= 0

]
+ ρgr︸︷︷︸

= 0

ρ

(
∂vθ
∂t︸︷︷︸
= 0

+ vr
∂vθ
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vθ
∂z︸ ︷︷ ︸

= 0

+
vrvθ
r︸︷︷︸
= 0

)
= −1

r

∂p

∂θ︸ ︷︷ ︸
= 0

+µ

[
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+

1

r2
∂2vθ
∂θ2︸ ︷︷ ︸

= 0

+
∂2vθ
∂z2︸ ︷︷ ︸
= 0

+
2

r2
∂vr
∂θ︸ ︷︷ ︸

= 0

]
+ ρgθ︸︷︷︸

= 0

ρ

(
∂vz
∂t︸︷︷︸
= 0

+ vr
∂vz
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vz
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vz
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
︸ ︷︷ ︸

= 0

+
1

r2
∂2vz
∂θ2︸ ︷︷ ︸

= 0

+
∂2vz
∂z2︸ ︷︷ ︸
= 0

]
+ ρgz

The relevant equation for the velocity is the θ-equation, which has simplified considerably from
the assumption that v = vθ(r)θ̂.

0 = µ
d

dr

(
1

r

d

dr
(rvθ)

)
Divide both sides by µ.

d

dr

(
1

r

d

dr
(rvθ)

)
= 0
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Integrate both sides with respect to r.

1

r

d

dr
(rvθ) = C1

Multiply both sides by r.
d

dr
(rvθ) = C1r

Integrate both sides with respect to r once more.

rvθ = C1
r2

2
+ C2

Divide both sides by r.

vθ(r) = C1
r

2
+
C2

r

Apply the two boundary conditions here to determine C1 and C2.

vθ(κR) = C1
κR

2
+
C2

κR
= ΩiκR

vθ(R) = C1
R

2
+
C2

R
= 0

Solving the system of equations yields

C1 =
2(−κ2Ωi)

1− κ2
and C2 =

κ2R2(Ωi)

1− κ2
.

We then have for the velocity distribution

vθ(r) =
2(−κ2Ωi)

1− κ2
r

2
+
κ2R2(Ωi)

1− κ2
1

r

=
κ2Ωi

1− κ2

(
−r +

R2

r

)
=

Ωi

(1/κ)2 − 1

(
−r +

R2

r

)
.

From equation (1), then, the curve is

θ(r, t) =
Ωit

(1/κ)2 − 1

(
−1 +

R2

r2

)
.

Now the formula for arc length in polar coordinates will be calculated.

(ds)2 = (dx)2 + (dy)2

=

[(
dx

dr

)2

+

(
dy

dr

)2
]

(dr)2

In polar coordinates x = r cos θ and y = r sin θ. Apply the chain rule to find dx/dr and dy/dr.

=

[(
cos θ − r sin θ · ∂θ

∂r

)2

+

(
sin θ + r cos θ · ∂θ

∂r

)2]
(dr)2

=

[
cos2 θ −

��������
2r
∂θ

∂r
sin θ cos θ + r2

(
∂θ

∂r

)2

sin2 θ + sin2 θ +
��������
2r
∂θ

∂r
sin θ cos θ + r2

(
∂θ

∂r

)2

cos2 θ

]
(dr)2
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(ds)2 =

[
(sin2 θ + cos2 θ) + r2

(
∂θ

∂r

)2

(sin2 θ + cos2 θ)

]
(dr)2

=

[
1 + r2

(
∂θ

∂r

)2]
(dr)2

=

{
1 + r2

[
Ωit

(1/κ)2 − 1

(
−2

R2

r3

)]2}
(dr)2

=

{
1 + r2

[
4(Ωit)

2

[(1/κ)2 − 1]2

(
R4

r6

)]}
(dr)2

=

[
1 +

4(Ωit)
2

[(1/κ)2 − 1]2

(
R4

r4

)]
(dr)2

Take the square root of both sides.

ds =

√
1 +

4(Ωit)2

[(1/κ)2 − 1]2

(
R4

r4

)
dr

Integrate both sides. ˆ l

0
ds =

ˆ R

κR

√
1 +

4(Ωit)2

[(1/κ)2 − 1]2

(
R4

r4

)
dr

Evaluate the integral on the left side and make the change of variables,

ξ =
r

R

dξ =
dr

R
→ Rdξ = dr,

in the integral on the right side.

l =

ˆ 1

κ

√
1 +

4(Ωit)2

[(1/κ)2 − 1]2

(
1

ξ4

)
(Rdξ)

Divide both sides by R.

l

R
=

ˆ 1

κ

√
1 +

4(Ωit)2

[(1/κ)2 − 1]2

(
1

ξ4

)
dξ

The final answer is supposed to be in terms of N (the number of revolutions), not Ωi or t, so we
need another equation relating them. Ωit is the angle the inner cylinder rotates in time t, so
Ωit/(2π) = N .

l

R
=

ˆ 1

κ

√
1 +

4(2πN)2

[(1/κ)2 − 1]2

(
1

ξ4

)
dξ

Therefore, the length of the curve after N revolutions of the inner cylinder is

l

R
=

ˆ 1

κ

√
1 +

16π2N2

[(1/κ)2 − 1]2ξ4
dξ.
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