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Problem 4B.1

Flow of a fluid with a suddenly applied constant wall stress. In the system studied in
Example 4.1-1, let the fluid be at rest before t = 0. At time t = 0 a constant force is applied to
the fluid at the wall in the positive x direction, so that the shear stress τyx takes on a new
constant value τ0 at y = 0 for t > 0.

(a) Differentiate Eq. 4.1-1 with respect to y and multiply by −µ to obtain a partial differential
equation for τyx(y, t).

(b) Write the boundary and initial conditions for this equation.

(c) Solve using the method in Example 4.1-1 to obtain

τyx
τ0

= 1− erf
y√
4νt

(4B.1-1)

(d) Use the result in (c) to obtain the velocity profile. The following relation1 will be helpful

ˆ ∞
x

(1− erf u) du =
1√
π
e−x

2 − x(1− erf x) (4B.1-2)

Solution

The aim in Example 4.1-1 was to find the fluid velocity in response to a wall set into motion with
velocity v0. Here in this problem we will find the fluid velocity in response to a constant shearing
force per unit area τ0 on the y = 0 plane in the x-direction. This velocity is assumed to flow only
in the x-direction and vary with y and t.

v = vx(y, t)x̂

At and prior to the time when the shear stress acts, the velocity is zero everywhere.

Initial Condition: vx(y, t) = 0, t ≤ 0, 0 ≤ y <∞

Also, far, far away from the y = 0 plane, the velocity will always be zero.

Boundary Condition: lim
y→∞

vx(y, t) = 0, −∞ < t <∞

The equation of continuity results by considering a mass balance over a volume element that the
fluid is flowing through. Assuming the fluid density ρ is constant, the equation simplifies to

∇ · v = 0. (1)

The equation of motion results by considering a momentum balance over a volume element that
the fluid is flowing through. Assuming the fluid viscosity µ is also constant, the equation
simplifies to the Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg (2)

1A useful summary of error functions and their properties can be found in H. S. Carslaw and J. C. Jaeger,
Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959), Appendix II.

www.stemjock.com



BSL Transport Phenomena 2e Revised: Chapter 4 - Problem 4B.1 Page 2 of 6

As this is a vector equation, it actually represents three scalar equations—one for each variable in
the chosen coordinate system. Using Cartesian coordinates is the appropriate choice for this
problem, so equations (1) and (2) will be expanded in (x, y, z). From Appendix B.4 on page 846,
the continuity equation becomes

∂vx
∂x︸︷︷︸
= 0

+
∂vy
∂y︸︷︷︸
= 0

+
∂vz
∂z︸︷︷︸
= 0

= 0,

which doesn’t tell us anything. From Appendix B.6 on page 848, the Navier-Stokes equation
yields the following three scalar equations in Cartesian coordinates. (Gravity is assumed to be
entirely in the y-direction, and no pressure gradients exist in the x- and z-directions.)

ρ

(
∂vx
∂t

+ vx
∂vx
∂x︸ ︷︷ ︸

= 0

+ vy
∂vx
∂y︸ ︷︷ ︸

= 0

+ vz
∂vx
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂x︸ ︷︷ ︸
= 0

+µ

[
∂2vx
∂x2︸ ︷︷ ︸
= 0

+
∂2vx
∂y2

+
∂2vx
∂z2︸ ︷︷ ︸
= 0

]
+ ρgx︸︷︷︸

= 0

ρ

(
∂vy
∂t︸︷︷︸
= 0

+ vx
∂vy
∂x︸ ︷︷ ︸

= 0

+ vy
∂vy
∂y︸ ︷︷ ︸

= 0

+ vz
∂vy
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂y
+ µ

[
∂2vy
∂x2︸ ︷︷ ︸
= 0

+
∂2vy
∂y2︸ ︷︷ ︸
= 0

+
∂2vy
∂z2︸ ︷︷ ︸
= 0

]
+ ρgy

ρ

(
∂vz
∂t︸︷︷︸
= 0

+ vx
∂vz
∂x︸ ︷︷ ︸

= 0

+ vy
∂vz
∂y︸ ︷︷ ︸

= 0

+ vz
∂vz
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂z︸ ︷︷ ︸
= 0

+µ

[
∂2vz
∂x2︸ ︷︷ ︸
= 0

+
∂2vz
∂y2︸ ︷︷ ︸
= 0

+
∂2vz
∂z2︸ ︷︷ ︸
= 0

]
+ ρgz︸︷︷︸

= 0

The relevant equation for the velocity is the x-equation, which has simplified considerably from
the assumption that v = vx(y, t)x̂.

ρ
∂vx
∂t

= µ
∂2vx
∂y2

Divide both sides by ρ and use the kinematic viscosity ν = µ/ρ.

∂vx
∂t

= ν
∂2vx
∂y2

Differentiate both sides with respect to y.

∂

∂y

(
∂vx
∂t

)
=

∂

∂y

(
ν
∂2vx
∂y2

)
Bring ν in front and switch the order of differentiation using Clairaut’s theorem.

∂

∂t

(
∂vx
∂y

)
= ν

∂2

∂y2

(
∂vx
∂y

)
Multiply both sides by −µ.

−µ ∂
∂t

(
∂vx
∂y

)
= −µν ∂

2

∂y2

(
∂vx
∂y

)
Since µ is a constant, it can be brought inside the derivatives.

∂

∂t

(
−µ∂vx

∂y

)
= ν

∂2

∂y2

(
−µ∂vx

∂y

)
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According to Appendix B.1 on page 843, τyx is

τyx = −µ
[
∂vy
∂x︸︷︷︸
= 0

+
∂vx
∂y

]
= −µ∂vx

∂y
.

Substituting this formula into the previous equation gives a PDE for the shear stress
τyx = τyx(y, t).

∂τyx
∂t

= ν
∂2τyx
∂y2

, 0 < y <∞, t > 0

A constant shear stress τ0 is applied on the y = 0 plane in the x-direction for all t ≥ 0.

Boundary Condition 1: τyx(0, t) = τ0, t ≥ 0

Far, far away from the y = 0 plane, the shear stress will always be zero.

Boundary Condition 2: lim
y→∞

τ(y, t) = 0, −∞ < t <∞

Prior to t = 0, the shear stress is zero everywhere.

Initial Condition: τ(y, t) = 0, t < 0, 0 ≤ y <∞

In order to make the dependent variable dimensionless, divide both sides of the PDE for τyx by τ0.

1

τ0

∂τyx
∂t

=
ν

τ0

∂2τyx
∂y2

Bring 1/τ0 inside the derivatives.

∂

∂t

(
τyx
τ0

)
= ν

∂2

∂y2

(
τyx
τ0

)
Let φ(y, t) = τyx/τ0 be the dimensionless shear stress.

∂φ

∂t
= ν

∂2φ

∂y2
, 0 < y <∞, t > 0

To solve this PDE on the half-line, make use of the similarity argument: Since φ is dimensionless,
the general solution must be a function of the remaining variables in some dimensionless
grouping. y has units of distance, t has units of time, and ν has units of distance2/time. The
combination of variables,

η =
y√
4νt

,

is most convenient for the diffusion equation, so

φ(y, t) = f

(
y√
4νt

)
.

Find the partial derivatives of φ

∂φ

∂t
= f ′

(
y√
4νt

)
· −y
4
√
νt3

∂φ

∂y
= f ′

(
y√
4νt

)
· 1√

4νt

∂φ

∂y
= f ′′

(
y√
4νt

)
· 1

4νt
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and substitute them into the PDE.

− y

4
√
νt3

f ′ = ν

(
1

4νt
f ′′
)

1

4t
f ′′ +

y

4
√
νt3

f ′ = 0

f ′′ +
y√
νt
f ′ = 0

f ′′ + 2
y√
4νt

f ′ = 0

f ′′ + 2ηf ′ = 0

This is a first-order linear ODE for f , so it can be solved with an integrating factor I.

I = exp

(ˆ η

2s ds

)
= eη

2

Multiply both sides of the ODE by I.

eη
2
f ′′ + 2ηeη

2
f ′ = 0

The left side can be written as d/dη(If ′) by the product rule.

d

dη
(eη

2
f ′) = 0

Integrate both sides with respect to η.
eη

2
f ′ = C1

Divide both sides by eη
2
.

f ′ = C1e
−η2

Integrate both sides with respect to η once more.

f(η) =

ˆ η

C1e
−s2 ds+ C2

The lower limit of integration is arbitrary, so it will be set to zero.

f(η) = C1

ˆ η

0
e−s

2
ds+ C2

This means the general solution is

φ(y, t) = f

(
y√
4νt

)
= C1

ˆ y/
√
4νt

0
e−s

2
ds+ C2.

Obtain the boundary conditions for φ from those for τyx.

τyx(0, t) = τ0 → τyx(0, t)

τ0
= 1 → φ(0, t) = 1

lim
y→∞

τ(y, t) = 0 → lim
y→∞

τ(y, t)

τ0
= 0 → lim

y→∞
φ(y, t) = 0
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Apply them now to determine C1 and C2.

φ(0, t) = C2 = 1

lim
y→∞

φ(y, t) = C1

ˆ ∞
0

e−s
2
ds+ C2 = C1

√
π

2
+ C2 = 0

Solving this system of equations yields C1 = −2/
√
π and C2 = 1.

φ(y, t) = − 2

π

ˆ y/
√
4νt

0
e−s

2
ds+ 1.

The error function is a special function which is defined as

erf z =
2

π

ˆ y/
√
4νt

0
e−s

2
ds,

so the solution can be written as

φ(y, t) = 1− erf

(
y√
4νt

)
.

Therefore, since φ = τyx/τ0,

τyx
τ0

= 1− erf

(
y√
4νt

)
.

Multiply both sides by τ0.

τyx(y, t) = τ0

[
1− erf

(
y√
4νt

)]
Change back to the velocity.

−µ∂vx
∂y

= τ0

[
1− erf

(
y√
4νt

)]
Divide both sides by −µ.

∂vx
∂y

= −τ0
µ

[
1− erf

(
y√
4νt

)]
To get vx, integrate both sides partially with respect to y.

ˆ y ∂vx
∂y

∣∣∣∣
y=r

dr =

ˆ y

−τ0
µ

[
1− erf

(
r√
4νt

)]
dr + h(t)

vx(y, t) = −
τ0
µ

ˆ y [
1− erf

(
r√
4νt

)]
dr + h(t)

Because h(t) is an arbitrary function, the lower limit of integration is arbitrary. Set it to ∞.

vx(y, t) = −
τ0
µ

ˆ y

∞

[
1− erf

(
r√
4νt

)]
dr + h(t)

Make the substitution,

u =
r√
4νt

du =
dr√
4νt

→
√
4νt du = dr.
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Then the integral becomes

vx(y, t) = −
τ0
µ

ˆ y/
√
4νt

∞
(1− erf u) (

√
4νt du) + h(t)

=
τ0
µ

√
4νt

ˆ ∞
y/
√
4νt

(1− erf u) du+ h(t)

=
τ0
µ

√
4νt

[
1√
π
e−u

2 − u(1− erf u)

]∣∣∣∣y/
√
4νt

+ h(t)

=
τ0
µ

√
4νt

[
1√
π
e−y

2/(4νt) − y√
4νt

(
1− erf

y√
4νt

)]
+ h(t)

=
τ0
µ

[√
4νt

π
e−y

2/(4νt) − y
(
1− erf

y√
4νt

)]
+ h(t).

There is another special function known as the complementary error function which is defined as

erfc z = 1− erf z,

so the previous equation further simplifies to

vx(y, t) =
τ0
µ

[√
4νt

π
exp

(
− y2

4νt

)
− y erfc y√

4νt

]
+ h(t).

Whether y →∞ or t→ 0, the initial and boundary conditions for vx imply that vx = h(t) = 0.
Therefore,

vx(y, t) =
τ0
µ

[√
4νt

π
exp

(
− y2

4νt

)
− y erfc y√

4νt

]
, t ≥ 0.

Below are plots of vx versus y for τ0 = µ = ρ = ν = 1 at various values of t. The times, t = 0,
t = 0.05, t = 0.22, t = 0.5, t = 1, t = 4, and t = 10, correspond to the graphs in red, orange,
yellow, green, blue, purple, and gray, respectively. There is no steady-state velocity distribution
here, unlike in Example 4.1-1 for a wall moving at speed v0. The fluid velocity keeps increasing.
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