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Problem 4B.3

Creeping flow around a spherical bubble. When a liquid flows around a gas bubble,
circulation takes place within the bubble. This circulation lowers the interfacial shear stress, and,
to a first approximation, we may assume that it is entirely eliminated. Repeat the development of
Ex. 4.2-1 for such a gas bubble, assuming it is spherical.

(a) Show that B.C. 2 of Ex. 4.2-1 is replaced by

B.C. 2: at r = R,
d

dr

(
1

r2
df

dr

)
+ 2

f

r4
= 0 (4B.3-1)

and that the problem set-up is otherwise the same.

(b) Obtain the following velocity components:

vr = v∞

[
1−

(
R

r

)]
cos θ (4B.3-2)

vθ = −v∞
[
1− 1

2

(
R

r

)]
sin θ (4B.3-3)

(c) Next obtain the pressure distribution by using the equation of motion:

p = p0 − ρgh−
(µv∞
R

)(R
r

)2

cos θ (4B.3-4)

(d) Evaluate the total force of the fluid on the sphere to obtain

Fz =
4

3
πR3ρg + 4πµRv∞ (4B.3-5)

This result may be obtained by the method of §2.6 or by integrating the z-component of
−[n · π] over the sphere surface (n being the outwardly directed unit vector normal to the
surface of the sphere).

Solution
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Part (a)

In order to model this gas bubble, consider a sphere that is stationary and immersed in a fluid
that is flowing upward from the bottom. Use a spherical coordinate system with its origin at the
sphere’s center, where r is the spherical coordinate, φ is the azimuthal angle, and θ is the polar
angle.

Because the flow is assumed to be steady and symmetric about the z-axis, the fluid velocity is
independent of φ and t.

v = vr(r, θ)r̂ + vθ(r, θ)θ̂

Provided that the fluid density ρ is constant, the equation of continuity simplifies to

∇ · v = 0.

If the fluid viscosity µ is also constant, then the equation of motion simplifies to the
Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg

Taking the curl of both sides of the Navier-Stokes equation eliminates the pressure and gravity
terms, resulting in the vorticity equation,

∂

∂t
w + v ·∇w = ν∇2w + w ·∇v,

where w = ∇× v is the vorticity and ν = µ/ρ is the fluid’s kinematic viscosity. For the particular
case here where the flow is independent of φ and t, the continuity equation and vorticity equation
may be combined by introducing a stream function ψ = ψ(r, θ) that is defined by

vr = − 1

r2 sin θ

∂ψ

∂θ
and vθ =

1

r sin θ

∂ψ

∂r
.

The equation that the stream function satisfies is given by

∂

∂t
(E2ψ)︸ ︷︷ ︸
= 0

+
1

r2 sin θ

[
∂ψ

∂r

∂

∂θ
(E2ψ)− ∂ψ

∂θ

∂

∂r
(E2ψ)

]
− 2E2ψ

r2 sin2 θ

(
∂ψ

∂r
cos θ − 1

r

∂ψ

∂θ
sin θ

)
= νE4ψ,
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where the operator E2 is defined as

E2ψ =

(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)
ψ.

See part (c) of Problem 3D.2 for its derivation. With the creeping flow assumption, the nonlinear
terms on the left side vanish.

0 = νE4ψ

Divide both sides by ν and substitute the operator for E2.

E4ψ = 0

(E2)(E2)ψ = 0(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)
ψ = 0

Associated with this PDE for ψ are three boundary conditions. The first comes from the
assumption that the bubble is impermeable: None of the fluid flowing around it can enter and
none of the gas within it can leak out.

vr(R, θ) = 0 → − 1

R2 sin θ

∂ψ

∂θ

∣∣∣∣
r=R

= 0 → ∂ψ

∂θ

∣∣∣∣
r=R

= 0

In Example 4.2-1 the second boundary condition came from the assumption that the fluid does
not slip on the bubble’s surface: vθ(R, θ) = 0. Here, however, the assumption will be that the
shear stress on the bubble acting in the θ-direction is zero. Use the formula for τrθ in spherical
coordinates on page 844.

0 = (−τrθ)|r=R

= µ

[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]∣∣∣∣
r=R

The third comes from the fact that far away from the sphere in any direction, the velocity is
v = v∞ẑ. Use formula A.6-33 on page 828 to write this in terms of r̂ and θ̂.

v = v∞[(cos θ)r̂ + (− sin θ)θ̂]

= v∞ cos θ r̂− v∞ sin θ θ̂

This implies that
lim
r→∞

vr(r, θ) = v∞ cos θ

lim
r→∞

vθ(r, θ) = −v∞ sin θ
,

or in terms of the stream function,

lim
r→∞

− 1

r2 sin θ

∂ψ

∂θ
= v∞ cos θ → lim

r→∞

∂ψ

∂θ
= −v∞r2 sin θ cos θ

lim
r→∞

1

r sin θ

∂ψ

∂r
= −v∞ sin θ → lim

r→∞

∂ψ

∂r
= −v∞r sin2 θ

 ⇒ lim
r→∞

ψ(r, θ) = −1

2
v∞r

2 sin2 θ.
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Since the PDE for ψ and all but one of its boundary conditions are linear and homogeneous, a
separable solution is sought: ψ(r, θ) = f(r)Θ(θ). In particular, based on the form of the stream
function in the third boundary condition, we hypothesize that the solution is of the form
ψ(r, θ) = f(r) sin2 θ. Then the second boundary condition becomes

0 = µ

[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]∣∣∣∣
r=R

= µ

{
r
∂

∂r

[
1

r

(
1

r sin θ

∂ψ

∂r

)]
+

1

r

∂

∂θ

(
− 1

r2 sin θ

∂ψ

∂θ

)}∣∣∣∣
r=R

= µ

{
r
∂

∂r

(
1

r2 sin θ

∂

∂r
[f(r) sin2 θ]

)
+

1

r

∂

∂θ

(
− 1

r2 sin θ

∂

∂θ
[f(r) sin2 θ]

)}∣∣∣∣
r=R

= µ

{
r
∂

∂r

[
1

r2 sin θ

(
df

dr
sin2 θ

)]
+

1

r

∂

∂θ

[
− 1

r2 sin θ
[2f(r) sin θ cos θ]

]}∣∣∣∣
r=R

= µ

[
r sin θ

d

dr

(
1

r2
df

dr

)
− 2f(r)

r3
d

dθ
(cos θ)

]∣∣∣∣
r=R

= µ

[
r sin θ

d

dr

(
1

r2
df

dr

)
+

2f(r)

r3
sin θ

]∣∣∣∣
r=R

.

Therefore, dividing both sides by µr sin θ, the second boundary condition is[
d

dr

(
1

r2
df

dr

)
+

2f(r)

r4

]∣∣∣∣
r=R

= 0,

and the first boundary condition is

0 =
∂ψ

∂θ

∣∣∣∣
r=R

=
∂

∂θ
[f(r) sin2 θ]

∣∣∣∣
r=R

= [2f(r) sin θ cos θ]|r=R
= 2f(R) sin θ cos θ → f(R) = 0.

Part (b)

Now substitute the product solution ψ(r, θ) = f(r) sin2 θ into the PDE to obtain an ODE for f .

0 = E4ψ

=

(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)
[f(r) sin2 θ]

=

(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)[
∂2

∂r2
[f(r) sin2 θ]− cot θ

r2
∂

∂θ
[f(r) sin2 θ] +

1

r2
∂2

∂θ2
[f(r) sin2 θ]

]
=

(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)[
d2f

dr2
sin2 θ − cot θ

r2
[2f(r) sin θ cos θ] +

1

r2
f(r)(2 cos2 θ − 2 sin2 θ)

]
=

(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)[
d2f

dr2
sin2 θ −���

��
��f(r)

r2
(2 cos2 θ) +���

��
��f(r)

r2
(2 cos2 θ)− f(r)

r2
(2 sin2 θ)

]
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Continue simplifying the right side.

0 =

(
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

)[
d2f

dr2
sin2 θ − 2

r2
f(r) sin2 θ

]
=

∂2

∂r2

[
d2f

dr2
sin2 θ − 2

r2
f(r) sin2 θ

]
− cot θ

r2
∂

∂θ

[
d2f

dr2
sin2 θ − 2

r2
f(r) sin2 θ

]
+

1

r2
∂2

∂θ2

[
d2f

dr2
sin2 θ − 2

r2
f(r) sin2 θ

]
=
d4f

dr4
sin2 θ − d2

dr2

[
2

r2
f(r)

]
sin2 θ

− cot θ

r2
d2f

dr2
(2 sin θ cos θ) +

2 cot θ

r4
f(r)(2 sin θ cos θ)

+
1

r2
d2f

dr2
(2 cos2 θ − 2 sin2 θ)− 2

r4
f(r)(2 cos2 θ − 2 sin2 θ)

=
d4f

dr4
sin2 θ −

(
2

r2
d2f

dr2
− 8

r3
df

dr
+

12

r4
f

)
sin2 θ

−
���

���
��1

r2
d2f

dr2
(2 cos2 θ) +

XXXXXXXX

2

r4
f(r)(2 cos2 θ)

+
���

���
��1

r2
d2f

dr2
(2 cos2 θ)− 1

r2
d2f

dr2
(2 sin2 θ)−

XXXXXXXX

2

r4
f(r)(2 cos2 θ) +

2

r4
f(r)(2 sin2 θ)

=

(
d4f

dr4
− 4

r2
d2f

dr2
+

8

r3
df

dr
− 8

r4
f

)
sin2 θ

Divide both sides by sin2 θ and then multiply both sides by r4.

r4
d4f

dr4
− 4r2

d2f

dr2
+ 8r

df

dr
− 8f = 0

This is a homogeneous equidimensional ODE, so its solutions are of the form f = rn.

f = rn → df

dr
= nrn−1 → d2f

dr2
= n(n− 1)rn−2 → d4f

dr4
= n(n− 1)(n− 2)(n− 3)rn−4

Substitute these formulas into the ODE and solve for n.

r4n(n− 1)(n− 2)(n− 3)rn−4 − 4r2n(n− 1)rn−2 + 8rnrn−1 − 8rn = 0

n(n− 1)(n− 2)(n− 3)rn − 4n(n− 1)rn + 8nrn − 8rn = 0

n(n− 1)(n− 2)(n− 3)− 4n(n− 1) + 8n− 8 = 0

n4 − 6n3 + 7n2 + 6n− 8 = 0

(n+ 1)(n− 1)(n− 2)(n− 4) = 0

n = {−1, 1, 2, 4}

Four solutions to the ODE are f = r−1 and f = r1 and f = r2 and f = r4. By the principle of
superposition, the general solution is a linear combination of these four.

f(r) = C1r
−1 + C2r + C3r

2 + C4r
4

www.stemjock.com



BSL Transport Phenomena 2e Revised: Chapter 4 - Problem 4B.3 Page 6 of 10

The stream function is then

ψ(r, θ) =

(
C1

r
+ C2r + C3r

2 + C4r
4

)
sin2 θ.

From the third boundary condition,

lim
r→∞

ψ(r, θ) = −1

2
v∞r

2 sin2 θ,

the stream function cannot be quartic in r (C4 = 0) and C3 = −v∞/2. Apply the first two now to
determine C1 and C2.

f(R) = 0 → C1

R
+ C2R−

v∞
2
R2 = 0[

d

dr

(
1

r2
df

dr

)
+

2f(r)

r4

]∣∣∣∣
r=R

= 0 → 6C1

R5
= 0

Solving this system of equations yields

C1 = 0 and C2 =
v∞R

2
.

Therefore, the stream function is

ψ(r, θ) =

(
v∞R

2
r − v∞

2
r2
)

sin2 θ,

and the resulting velocity components are

vr(r, θ) = − 1

r2 sin θ

∂ψ

∂θ

= − 1

r2 sin θ

(
v∞R

2
r − v∞

2
r2
)

(2 sin θ cos θ)

=

(
v∞ −

v∞R

r

)
cos θ

= v∞

[
1−

(
R

r

)]
cos θ

vθ(r, θ) =
1

r sin θ

∂ψ

∂r

=
1

r sin θ

(
v∞R

2
− v∞r

)
sin2 θ

=

(
v∞R

2r
− v∞

)
sin θ

= −v∞
[
1− 1

2

(
R

r

)]
sin θ.
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Part (c)

To get the pressure distribution, return to the Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg

From Appendix B.6 on page 848, the Navier-Stokes equation yields the following three scalar
equations in spherical coordinates.

ρ

(
∂vr
∂t︸︷︷︸
= 0

+ vr
∂vr
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vr
∂θ︸ ︷︷ ︸

= 0

+
vφ

r sin θ

∂vr
∂φ︸ ︷︷ ︸

= 0

−
v2θ + v2φ

r︸ ︷︷ ︸
= 0

)
= −∂p

∂r

+ µ

[
1

r2
∂2

∂r2
(r2vr) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂vr
∂θ

)
+

1

r2 sin2 θ

∂2vr
∂φ2︸ ︷︷ ︸

= 0

]
+ ρgr

ρ

(
∂vθ
∂t︸︷︷︸
= 0

+ vr
∂vθ
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+
vφ

r sin θ

∂vθ
∂φ︸ ︷︷ ︸

= 0

+
vrvθ − v2φ cot θ

r︸ ︷︷ ︸
= 0

)
= −1

r

∂p

∂θ

+ µ

[
1

r2
∂

∂r

(
r2
∂vθ
∂r

)
+

1

r2
∂

∂θ

(
1

sin θ

∂

∂θ
(vθ sin θ)

)
+

1

r2 sin2 θ

∂2vθ
∂φ2︸ ︷︷ ︸

= 0

+
2

r2
∂vr
∂θ
− 2 cot θ

r2 sin θ

∂vφ
∂φ︸ ︷︷ ︸

= 0

]
+ ρgθ

ρ

(
∂vφ
∂t︸︷︷︸
= 0

+ vr
∂vφ
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vφ
∂θ︸ ︷︷ ︸

= 0

+
vφ

r sin θ

∂vφ
∂φ︸ ︷︷ ︸

= 0

+
vφvr + vθvφ cot θ

r︸ ︷︷ ︸
= 0

)
= − 1

r sin θ

∂p

∂φ

+ µ

[
1

r2
∂

∂r

(
r2
∂vφ
∂r

)
︸ ︷︷ ︸

= 0

+
1

r2
∂

∂θ

(
1

sin θ

∂

∂θ
(vφ sin θ)

)
︸ ︷︷ ︸

= 0

+
1

r2 sin2 θ

∂2vφ
∂φ2︸ ︷︷ ︸

= 0

+
2

r2 sin θ

∂vr
∂φ︸ ︷︷ ︸

= 0

+
2 cot θ

r2 sin θ

∂vθ
∂φ︸ ︷︷ ︸

= 0

]
+ ρgφ

Because the flow is steady and creeping, all the terms on the left side of each equation are zero.
Gravity points down in the negative z-direction g = −gẑ = −g(cos θ r̂− sin θ θ̂), which means
gr = −g cos θ and gθ = g sin θ and gφ = 0.

0 = −∂p
∂r

+ µ

[
1

r2
∂2

∂r2
(r2vr) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂vr
∂θ

)]
− ρg cos θ

0 = −1

r

∂p

∂θ
+ µ

[
1

r2
∂

∂r

(
r2
∂vθ
∂r

)
+

1

r2
∂

∂θ

(
1

sin θ

∂

∂θ
(vθ sin θ)

)
+

2

r2
∂vr
∂θ

]
+ ρg sin θ

0 = − 1

r sin θ

∂p

∂φ
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Substitute the functions found for vr(r, θ) and vθ(r, θ) and evaluate the derivatives.

0 = −∂p
∂r

+ µ

(
2Rv∞ cos θ

r3

)
− ρg cos θ

0 = −1

r

∂p

∂θ
+ µ

(
Rv∞ sin θ

r3

)
+ ρg sin θ

0 = − 1

r sin θ

∂p

∂φ

Solve for the pressure derivatives.

∂p

∂r
=

2µRv∞ cos θ

r3
− ρg cos θ

∂p

∂θ
=
µRv∞ sin θ

r2
+ ρgr sin θ

∂p

∂φ
= 0

This third equation implies that the pressure is independent of φ: p = p(r, θ). Integrate both sides
of the first equation partially with respect to r

p(r, θ) = −µRv∞ cos θ

r2
− ρgr cos θ + F (θ)

and then differentiate it with respect to θ.

∂p

∂θ
=
µRv∞ sin θ

r2
+ ρgr sin θ + F ′(θ)

Comparing this with the second equation above, we see that

F ′(θ) = 0.

Integrate both sides with respect to θ, setting the integration constant to p0, the pressure at the
z = 0 plane far away from the sphere.

F (θ) = p0

Therefore,

p(r, θ) = −µRv∞ cos θ

r2
− ρgr cos θ + p0

= p0 − ρgr cos θ − µv∞R cos θ

r2

= p0 − ρgh−
µv∞
R

(
R

r

)2

cos θ,

where h = r cos θ.
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Part (d)

The total force acting on the bubble is due to the pressure, the viscous shear stress, and the
viscous normal stress. It can be split into two components, the first acting normally and the
second acting tangentially.

F = F⊥ + F‖

The force per unit area acting normally is due to the pressure and viscous normal stress as shown
below.

Integrate it over the surface area of the sphere to get the force. A factor of cos θ is needed in the
integrand to get the z-component of force specifically. Note that p has a minus sign in front of it
because the force resulting from it acts radially inward. Also, τrr has a minus sign in front of it
because the fluid is in a region of greater r acting on a surface of lesser r. No second minus sign is
needed in front of τrr because the velocity components that it’s in terms of already take care of it.

(F⊥)z =

ˆ
[−p(R, θ) + (−τrr)|r=R ]̂r(cos θ) · dA

=

ˆ [
−
(
p0 − ρgR cos θ − µv∞

R
cos θ

)
+ 2µ

∂vr
∂r

∣∣∣∣
r=R

]
r̂(cos θ) · (r̂ dA)

=

ˆ (
−p0 + ρgR cos θ +

µv∞
R

cos θ +
2µv∞
R

cos θ

)
(r̂ · r̂) cos θ dA

=

ˆ (
−p0 + ρgR cos θ +

3µv∞
R

cos θ

)
cos θ dA

=

ˆ 2π

0

ˆ π

0

(
−p0 + ρgR cos θ +

3µv∞
R

cos θ

)
cos θ (R2 sin θ dθ dφ)

=

(ˆ 2π

0
R2 dφ

)(
−p0
ˆ π

0
cos θ sin θ dθ︸ ︷︷ ︸

= 0

+ρgR

ˆ π

0
cos2 θ sin θ dθ︸ ︷︷ ︸

= 2/3

+
3µv∞
R

ˆ π

0
cos2 θ sin θ dθ︸ ︷︷ ︸

= 2/3

)

= 2πR2

(
2ρgR

3
+

2µv∞
R

)
=

4πR3ρg

3
+ 4πµRv∞
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The force per unit area acting tangentially is due only to the viscous shear stress as shown below.

Integrate it over the surface area of the sphere to get the force. An extra factor of sin θ is needed
in the integrand to get the z-component of force specifically. As with τrr, a minus sign has been
placed in front of τrθ because the fluid is in a region of greater r acting on a surface of lesser r.

(F‖)z =

ˆ
(−τrθ)|r=R θ̂(sin θ) · dA

=

ˆ
µ

[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]∣∣∣∣
r=R

θ̂(sin θ) · dA

=

ˆ
µ

[
(r −R)v∞ sin θ

r2
+

(R− r)v∞ sin θ

r2

]∣∣∣∣
r=R

θ̂(sin θ) · dA

=

ˆ
µ(0)θ̂(sin θ) · dA

= 0

Therefore, the total force in the z-direction on the sphere is

Fz = (F⊥)z + (F‖)z

=
4

3
πR3ρg + 4πµv∞R.

This first term is the buoyant force, and the second term is the kinetic force on the bubble due to
the upward flow. By assuming the shear stress is zero, we obtain a kinetic force which is
two-thirds that given by Stokes’s law, which results from the no-slip assumption.
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