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Problem 4D.1

Flow near an oscillating wall.® Show, by using Laplace transforms, that the complete solution
to the problem stated in Eqgs. 4.1-44 to 47 is

Yz _ =iy t— 2 —1/00 ~Bt(sin /B vy)— s di 4D.1-1
~ e cos(w w/2vy) =5 e “'(sin w/yy)wg—i—E)Q w (4D.1-1)

Solution

The equation of motion for the x-component of velocity v, of the fluid is

Oy 9%v,
=T 4.1-44
ot~ o2 ( )
and the initial and boundary conditions associated with it are
I.C.: at t <0, vy =0 for all y (4.1-45)
B.C. 1: at y =0, vy = veR{e™"} forallt >0 (4.1-46)
B.C. 2: at y = oo, vy =0 for all t > 0, (4.1-47)

where R{e!} represents the real part of oscillation, coswt, by Euler’s formula. Physically, B.C. 1
represents a wall at y = 0 that is oscillating at 27 /w cycles per second with maximum speed vg.
Assuming that the fluid does not slip on the wall, its velocity there will be the same. Since we're
interested in the solution for ¢ > 0, the Laplace transform can be applied to solve the PDE. The
Laplace transform of v, is defined as

C{on( 1)} = Taly, 5) = /0 ety 1) dt.

As a result, the derivatives of v, with respect to t and y transform as follows.
R
r 0%v, _ d?v,
0y? dy?

Take the Laplace transform of both sides of the PDE
r Ovg r 9%,
= V——
ot oy?

- o —8 S
E{Ux(oa t)} — E{UO cos wt} — Um((), 3) = /0v e tUO coswt dt = U0782 T o2 (1)

and its boundary conditions.

L{vy(o0,t)} = L{0} —  Vy(c0,5)=0 (2)

8H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959), p.
319, Eq. (8), with e = %77 and @ = ku?.
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Use the fact that the Laplace transform is a linear operator.

Ovg 9%,
{5} =e {5 )

Use the formulas above to transform the derivatives.

From the initial condition we have v,(y,0) = 0. Divide both sides by v.

d?v, S _

=9
dy? v ”

With the help of the Laplace transform, the PDE has been reduced to a second-order ODE whose
solution can be written in terms of exponential functions.

Uz (y,s) = C1 exp <\/§y> + Cyexp (—\/§y>

Apply the Laplace-transformed boundary conditions here to determine C7 and Cy. For equation
(2) to be satisfied, we require that C; = 0.

Uz (y, @) = Caexp <—\/§y>

Now set y = 0 and use equation (1) to determine Cs.

S

7_)55(0, 3) = CQ = ’U(]m

Consequently, the Laplace-transformed solution to the problem is

_ _ s s
Um(yas)_v082+w2 eXp | — ;y .

Divide both sides by vy to make the solution non-dimensional. Also, isolate y/s in the exponential
function.

L
vo 82+ w? eXp( ﬁ\/g>

The aim now is to solve for v, /vy by taking the inverse Laplace transform of both sides.

1 Jv _ 5 Yy
PO G S GREE (—— ——=V/s
{’U() } 2w P Vv Vs
In order to evaluate the right side, we will resort to the definition of the inverse Laplace transform.
Uy 1 vHico & S Y
- = ———e —— d
vg 2w /7Z-oo © 2y 2P ﬁ\/g *

where v is a real constant chosen such that all singularities of the integrand lie to the left of the
infinite vertical line (v — ico,y + i00) in the complex plane.
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Figure 1: This is the complex plane with the singularities of the integrand marked as well as the
vertical line (v — ioco,y 4 i00).

The integral is evaluated by considering a closed loop integral in the complex plane containing
this vertical line and then applying the Cauchy residue theorem to get an equation, allowing us to
solve for it. Normally the vertical line loops around back to v — 0o by a semicircular arc to the
left, but because of v in the exponential function, a different path has to be taken. This is
because for complex w, the square root function can be written in terms of the logarithm.

1
Vs = exp (2 log s>
The principal branch of /s is obtained by taking the principal branch of log s.
1
= exp (2 Logs) , (Is]| >0, =7 < Args <)

= exp [;(lnr + z@)]
— \/;ei®/2’

where 7 = |s| is the magnitude of s and © = Arg s is the principal argument of s. In other words,
this expression for /s can be used for a complex number s = 7¢*®. Taking the branch cut into
account, the closed loop in Figure 2 will be considered.
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Y +ico

Res

v

Y—ico

Figure 2: The branch cut (|s| > 0, —7 < Arg s < 7) is represented in the complex plane by the
squiggly line. In order to close the integration path after traversing the vertical line, let it follow
a circular arc CRr,. Once the path gets to the branch cut at © = 7, integrate around it by going
radially along L1, around the origin by a circular arc C, to the underside of the branch cut, and

then radially again along Ls at © = —7. From there, let it follow a circular path Cg, back to
¥ — 100.
There are two singularities enclosed in this loop, one at s = iw and one at s = —iw. According to

the Cauchy residue theorem, the closed loop integral of a function in the complex plane is equal
to 27i times the sum of the residues at the enclosed singularities. That is,

§£ eStU—‘T ds = 2mi (Res e“vi + Res eStqjx) .
c

Vo s=iw Vo s=—1iw Vo
This closed loop integral is the sum of six integrals, one over each arc in the loop.

e g v v o
/ et ds + / eStxds—i—/eStIds—l—/eStxds
~y—ioo Vo Vo Vo Vo

CRl Ly CP

) ) . v )
+ [ et Zds+ et ds = 2mi [ Res e®= 4+ Res e'-=%
Vo Vo s=iw Vo s=—1w Vo
LZ CR2
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The parameterizations for the arcs are as follows.

Cr,: s=Re®, @:g 5 O=n
Cr,: s=Re®, O=-71 — @:_g
Cy: s:peie, O=7 — 0O=-—7
Li: s=re™, r=R — r=p
Ly: s=re ™, r=p — r=R

In the limit as R — oo the integrals over C'r, and Cg, vanish; also, in the limit as p — 0 the
integral over C, vanishes. Proof of these statements will be given at the end. Consequently,

yFioo % v v v v
et Zds+ [ e Zds+ [ e L ds=2mi [ Reses' = + Res = ).
y—i00 () Vo Vo s=iw Vo s=—1w Vo
L1 L2

Use the parameterizations for L; and Ls to obtain the sum of the integrals over these arcs.

v v Popeimere'™t Y , ,
/eStvg; ds + /eSth ds = /R 7(7“6”)2 T exp (—ﬁ\/;e”ﬁ) ('™ dr)

Ll L2
R —im re it
re "Te y . -
A e A
P
Note that €™ = e = —1 and €™/2 = j and e~ "/2 = —j,

st{}i st{}i _ g (_T)e(_r)t ¥y ; _
L/le o dS+L/2€ ” ds_/R R exp ﬁ\/F(Z) (—dr)

In the limit as R — oo and p — 0, we get

v v
et Zds+ | et =2 ds
Vo Vo

L1 L2

I
bo
-~

S—
3
<
[\&]
o
+ 1
€| 3
[NV
w,
=
7N\
o
N
~

I8

=
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Thus, Cauchy’s residue theorem becomes

y+ioo - 00 —rt - =
0 , re ) r , v 0
St ds + 2i —— sin —y | dr =27i [ Rese®* = 4+ Res e~ ).
N—ico V0 0o tw v s=iw Vg s=—iw Vg

The next step is to evaluate the residues at the enclosed singularities.

5 st
Res % = Res sz exp (—y\/§> = Res o1 (S) = ¢1(iw)

s=iw Vo s=iw §2 \/D s=iw S — W

= st
Res e2% = Res Lexp (—y\/§> = Res b2(3) = ¢o(—iw)

s=—iw V0 s=—iw §2 + w? ﬁ s=—iw S + 1w

Because s = iw and s = —iw are simple poles, the residues there are ¢;(iw) and ¢o(—iw),
respectively.
se’! y et Y
= —— ¢ _— — = ——— e _—
91(5) stiw P ( ﬁ\/g> 01 (i) 2w P ( ﬁﬁe

st e iwt )
P2(s) = :_eiiw exp (‘\%ﬁ) - Po(—iw) = 7?;&) exp (—\%\@e’”/‘l)

Apply Euler’s formula to simplify the formulas for ¢ (iw) and ¢o(—iw).
1(Ww) = 2 Xp Vy \/5 \/§ - 2 Xp 2]/y Xp 2Vy
ATIERE IV 2 T ) T2t P UV Y)Y )Y
Combine the complex exponential functions.
b1(i) = g exp (g ) exp i (wt = [
1(iw) = 5 exp 5, Y | exp |i(w 5, Y
, 1 w ‘ w
o (—iw) = 5 €XP (— 2yy) exp [—z (wt — ’/ny>]

As a result, the sum of the residues is

v v 1 1
Res eStv—x+ Res eStU—x:fexp — iy exp |t | wt — iy + —exp | — iy exp |—i | wt — iy
s=iw vy s=—iw Uy 2 2v 2v 2 2v 2v
t

:exp<_ w )exp[i(w — V)] Hexp i (wt - Vo)

51/

w w
=exp| — 511 cos | wt — gy .

Thus, Cauchy’s residue theorem becomes

y+ioco = [oe} —rt
/ et s + 2@'/ % sin <\/?y) dr = 2miexp (—1 / wy) cos (wt — wy) .
y—ioo () 0o T°tw v 2v 2v

Move the improper integral over to the right side.

~y4ioco - 00 —rt
/ eStv—x ds = 2miexp <—1 / wy) cos <wt — Uwy> — Zi/ % sin <\/?y> dr
y—ioo Vo 2v 2v 0o Ttw v
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Divide both sides by 2mi.

I N e 1) o Je N L e r
- e ds = exp Yy | cos | wt Y 5 5 Sin y | dr
270 Jy—ioo Vo 2v 2v m™Jo 4w v

Let r = . Therefore,

Vg w w 1 [ _& . \/; w
— = -/ t— 4/ — - — — ——d t > 0.
. exp < 2yy) cos (w 2Vy> /0 e Wsin Vy 3 5 dw, >

The term with the improper integral is the transient part of the solution. As t gets big, the
integral makes less and less of a contribution to the fluid velocity. The other term is the
steady-state solution, that is, the solution for large ¢. Notice that the velocity falls off
exponentially with distance from the wall y. Also, there is a phase shift in the cosine’s argument,
indicating that there is lag. When the wall moves, it takes time for the fluid some distance away
to feel that motion. This time is proportional to that distance.

The Integral Over C,

The aim here is to show that the integral over C, tends to zero as p — 0. Recall that the
parameterization on C) is s = pe'® | where © goes from 7 to —.

v sest Y
/€Stvl.0 ds :/Mexp <—\/17\/§> ds

P Cp

/7r pei@eret Y 0/2 %
= = exp | ——=4/pe’ (ipe'™ dO)
[ (Vo)

pei®)2 + w2

-7 2,020 pet©t
— p e € _ Y i9/2 d@
[ e ()

Now take the limit as p — 0.
T -7 p2 120 ope'©t y ‘
lim €St—xds = hmz/ 27 - e <_\/ﬁez®/2> dO
v
vy

- X
p—0 Vo p—0 (p629)2 + w? P
P

Because the limits of integration don’t depend on p, the limit can be brought inside the integral.

-7 2,120 ,pei©t
) . pee Y i0/2
= lim ————— —— de
z/7T le(l) (peP)2 5 €XP < ﬁ\/ﬁe >

The integrand tends to 0 because of p? in the numerator. Therefore,

. v
lim [ e®=X ds=0.
p—0 Vo
Cp
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The Integral Over Cg,

Here we will show that the integral over C'r, tends to zero as R — oo. Recall that the
parameterization on Cp, is s = Re™®, where © goes from 5 tom.

ot Ur sest Y
—ds = - —— d
/ e o s / S 5 exp< ﬁ\/g> s

Ry Ry

T Rei®ReOt y o)
:ﬁ (Rei®)2 + g2 P (—ﬁ@e /)@Re do)
2

T RQQiQGeReiet y .
— - - — 2 VRe®©/?2) g0
/ (Re®)2 12 eXp( VAR )

Apply Euler’s formula to the complex exponential functions inside the exponential functions.

7 R2 20 Rt(cos@+isin@) Y ® )
W

R2 20 thos@ thsin@ y [e) Ly e
/ exp <—ﬁ\/§cos 2) exp <—zﬁ\/§sm 2) do®

Re™©)2 + w2

Now consider the integral’s magnitude.

RZ 20 Rt cos © th sin © ) [e)
/ Stv‘r / exp [ ——=vRcos — | exp —il\/ﬁsing de
R2 ei2®€Rt cos @eiRt sin © <
exp

ez@ + w2
CRl
iy
< -
- /5 (Rei®)2 4 w?

_ /7r ‘R2H€i29"€RtCOS®H€iRtSin9‘
x |(Re®®)? + w?|

2

Y C]
NG, 2

v ©
exp <—ﬁ\/ECOS 2)

The complex exponential functions never have a magnitude higher than 1. Also, for two complex
numbers, z; and 29, |21 + 22| > ||z1| — |22||. For the denominator then,

exp <—i\%\/§sin @> ’ 4O

[(Re™©)? + w?| > ||(Re™®)?| — [w?|| = [|Re™P — |?|| = R? — w?
T R2€thos(9 y [e)
S /721- m exp < \/;\/ECOS ) d@

Divide the numerator and denominator by R2.

m ,Rtcos© y \/7 (e
< -
_[T 1_exp< ﬁ Rcos2>d®

2

Take the limit as R — oo.

Uy ™ ethos@ y [e)
lim / et L ds| < lim [ —— exp <—\/fzcos> de
R—o0 d V0 R—o0 T 1-— % \/; 2

R
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The limits of integration do not depend on R, so the limit may be brought inside the integral.

- ™ Rtcos© e
lim /eStvxds g/ lim eﬁexp (—y\/ﬁc052> do

R—o0 V0 T R—oo ] — % \/;
Cr,

The denominator goes to 1. For § < © <, cos © is negative. On the other hand, both ¢ > 0 and
R >0, so
efes® 50 as R — 0.

In the second exponential function y > 0, v > 0, and R > 0. For 7 < % < 3, cos % is positive, so

exp<—\%\/}§cos(;))—>0 as R — oo.

Thus, the right side is zero.

. 0,

lim et ds| <0
R—o0 ()

CRl

Magnitudes cannot be negative, so the limit must be equal to zero.

lim /eStdes =0

R—o0 ()

Cr,

The only number that has a magnitude of zero is zero. Therefore,

. v
lim et L ds = 0.
R—o0 Vo
CRl
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The Integral Over Cg,

Here we will show that the integral over Cr, tends to zero as R — oo. Recall that the
parameterization on Cg, is s = Re™®, where © goes from —7 to —Z.

2
v sest Y
/eStUst: / mexp <_ﬁ\/§> ds

Ro Ro

-3 ReiGGRei@t y ; .y
= / m exp <_\/;\/E€ 6/2> (ZRC © d@)

C[T3 R2120oRet ;
:Z/ mexp <—\Z//;\/E€ 9/2> de

Apply Euler’s formula to the complex exponential functions inside the exponential functions.
. -3 R2¢120 Rt(cos ©+isin ©) y (e} e
= z/ (Re®V 1 o2 exp [—ﬁ\/ﬁ <cos 5 + ¢sin 2)} de

. -3 R2ei2@€Rt cos @eiRtsin@ Y S .Y . ©
B 2/4 (Re®)2 12 P <_W\/§COS 2) o <_Zﬁ\/ﬁsm 2) 1

—T

—T

Now consider the integral’s magnitude.

- —5 P2,i20 Rtcos© ,iRtsin © ® ©
/gtvxds = z/ e 6.@ ¢ exp —i\/ﬁcos— exp —ii\/ﬁsin— d®
vo —r (Re'®)? + w? Vv 2 v 2

Cry
—T | p2,i20 Ricos® ,iRtsin © ) e
S/ R 6‘@ ‘ exp —l\/ﬁcosf exp —ii\/ﬁsmf d®
_— (Re©)? + w? Vv 2 Vv 2
-Z |R2H6i29||€thos®”6iRtsin9| y ©® LY . ©
- / [(Re®)? 1 o) exp (= VEeosy )| (—i g VEsing )] 40

The complex exponential functions never have a magnitude higher than 1. Also, for two complex
numbers, z; and 29, |21 + 22| > ||z1| — |22||. For the denominator then,

(R®)2 4 2| > [|(Re®)?] — 2| =[R2 — o] = F? — 2
-5 R2€thos(9 y e}
S /ﬂ— mexp <_\/17\/ECOS 2) d@

Divide the numerator and denominator by R?.

-3 ethos@ ( y @)
< — exp | ——=VRcos — | dO
- /_7r - P\ 2

Take the limit as R — oo.

= —Z _Rtcos®
. U . 2 e ©
Rhm / et L ds| < }%Hn ———5exp (—vacos ) doe
—00 Vo —00 J _ — *
Cry " R?
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The limits of integration do not depend on R, so the limit may be brought inside the integral.

- -z Rtcos© e
lim / et ds < / * lim eﬁexp —i\/ﬁcos— do
R—o0 (%) o R—oo 1 — % ﬁ 2

Cry

The denominator goes to 1. For —m < © < —7, cos © is negative. On the other hand, both ¢ > 0
and R > 0, so

eftteos® 0 as R — .

(€]

[e) P . "
5 < —7, Cos 5 1s positive,

In the second exponential function y > 0, v > 0, and R > 0. For —§ <
SO

S
exp<—\%\/}>€cos2>—>0 as R — oo.

Thus, the right side is zero.

. v

lim St ds| <0
R—oo )
CR2

Magnitudes cannot be negative, so the limit must be equal to zero.

lim /eStdes =0

R—o0 ()

Cr,

The only number that has a magnitude of zero is zero. Therefore,

. v
lim et L ds = 0.
R—o0 Vo

CRQ
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