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Problem 4D.4

Unsteady annular flows.

(a) Obtain a solution to the Navier-Stokes equation for the start-up of axial annular flow by a
sudden impressed pressure gradient. Check your result against the published solution.10

(b) Solve the Navier-Stokes equation for the unsteady tangential flow in an annulus. The fluid is
at rest for t < 0. Starting at t = 0 the outer cylinder begins rotating with a constant angular
velocity to cause laminar flow for t > 0. Compare your result with the published solution.11

Solution

Part (a)

Since the flow is unsteady and occuring along the axis of an annular tube, we assume that the
velocity varies as a function of radius and time and that the fluid moves only in the z-direction.

v = vz(r, t)ẑ

If we assume the fluid does not slip on the tube wall, then it has the wall’s velocity at the inner
radius (r = κR) and the outer radius (r = R).

Boundary Condition 1: vz(R, t) = 0

Boundary Condition 2: vz(κR, t) = 0

The fluid starts from rest, so the initial velocity is zero.

Initial Condition: vz(r, 0) = 0

The equation of continuity results by considering a mass balance over a volume element that the
fluid is flowing through. If the fluid density ρ is constant, then the equation simplifies to

∇ · v = 0.

The equation of motion results by considering a momentum balance over a volume element that
the fluid is flowing through. Assuming that ρ and the fluid viscosity µ are constant, it simplifies
to the Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg

As this is a vector equation, it actually represents three scalar equations—one for each variable in
the chosen coordinate system. Using cylindrical coordinates is the appropriate choice for this
problem, so the two previous equations will be used in (r, θ, z). From Appendix B.4 on page 846,
the continuity equation becomes

1

r

∂

∂r
(rvr)︸ ︷︷ ︸

= 0

+
1

r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+
∂vz
∂z︸︷︷︸
= 0

= 0,

10W. Müller, Zeits. für angew. Math. u. Mech., 16, 227–238 (1936).
11R. B. Bird and C. F. Curtiss, Chem. Engr. Sci, 11, 108–113 (1959).
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which doesn’t tell us anything. From Appendix B.6 on page 848, the Navier-Stokes equation
yields the following three scalar equations in cylindrical coordinates.

ρ

(
∂vr
∂t︸︷︷︸
= 0

+ vr
∂vr
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vr
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vr
∂z︸ ︷︷ ︸

= 0

−
v2θ
r︸︷︷︸
= 0

)
= −∂p

∂r︸ ︷︷ ︸
= 0

+µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
︸ ︷︷ ︸

= 0

+
1

r2
∂2vr
∂θ2︸ ︷︷ ︸

= 0

+
∂2vr
∂z2︸ ︷︷ ︸
= 0

− 2

r2
∂vθ
∂θ︸ ︷︷ ︸

= 0

]
+ ρgr︸︷︷︸

= 0

ρ

(
∂vθ
∂t︸︷︷︸
= 0

+ vr
∂vθ
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vθ
∂z︸ ︷︷ ︸

= 0

+
vrvθ
r︸︷︷︸
= 0

)
= −1

r

∂p

∂θ︸ ︷︷ ︸
= 0

+µ

[
∂

∂r

(
1

r

∂

∂r
(rvθ)︸ ︷︷ ︸

= 0

)
+

1

r2
∂2vθ
∂θ2︸ ︷︷ ︸

= 0

+
∂2vθ
∂z2︸ ︷︷ ︸
= 0

+
2

r2
∂vr
∂θ︸ ︷︷ ︸

= 0

]
+ ρgθ︸︷︷︸

= 0

ρ

(
∂vz
∂t

+ vr
∂vz
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vz
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vz
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2︸ ︷︷ ︸

= 0

+
∂2vz
∂z2︸ ︷︷ ︸
= 0

]
+ ρgz

The relevant equation for the velocity is the z-equation, which has simplified considerably from
the assumption that v = vzẑ.

ρ
∂vz
∂t

= −∂p
∂z

+
µ

r

∂

∂r

(
r
∂vz
∂r

)
+ ρgz

The sum of −∂p/∂z and ρgz is the impressed pressure gradient and will be denoted as
−(PL −P0)/(L− 0).

ρ
∂vz
∂t

=
P0 −PL

L
+
µ

r

∂

∂r

(
r
∂vz
∂r

)
The aim now is to put the partial differential equation into dimensionless form. Multiply both
sides by 4L/(P0 −PL).

ρ
∂vz
∂t

4L

P0 −PL
= 4 +

1

r

∂

∂r

(
r
∂vz
∂r

4µL

P0 −PL

)
Introduce R2 in the numerator and denominator on both sides.

ρR2∂vz
∂t

4L

(P0 −PL)R2
= 4 +

R

r
R
∂

∂r

[
r
∂vz
∂r

4µL

(P0 −PL)R2

]
Introduce µ in the numerator and denominator on the left side, and introduce R in the numerator
and denominator on the right side.

ρR2

µ

∂vz
∂t

4µL

(P0 −PL)R2
= 4 +

R

r
R
∂

∂r

[
r

R
R
∂vz
∂r

4µL

(P0 −PL)R2

]
Here the dependent variable will be changed. Let

φ = vz
4µL

(P0 −PL)R2
.

The independent variables will also be changed to ones that are dimensionless.

ξ =
r

R
→ dξ =

dr

R
⇒ R

∂

∂r
=

∂

∂ξ

τ =
µt

ρR2
→ dτ =

µdt

ρR2
⇒ ρR2

µ

∂

∂t
=

∂

∂τ
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Therefore, the governing differential equation for velocity with dimensionless variables is

∂φ

∂τ
= 4 +

1

ξ

∂

∂ξ

(
ξ
∂φ

∂ξ

)
. (1)

In terms of the new variables, the boundary and initial conditions become

φ(1, τ) = 0 (2)

φ(κ, τ) = 0 (3)

φ(ξ, 0) = 0. (4)

Due to the impressed pressure gradient, the fluid starts to move and eventually reaches a steady
state. As a result, we expect the solution to be of the form φ(ξ, τ) = φ∞(ξ)− φt(ξ, τ), where φ∞
is the steady-state velocity profile that is reached after a long time has passed and φt(ξ, τ) is the
transient velocity profile that dies out as τ increases. Substitute the expression for φ into
equation (1).

∂

∂τ
[φ∞(ξ)− φt(ξ, τ)] = 4 +

1

ξ

∂

∂ξ

[
ξ
∂

∂ξ
[φ∞(ξ)− φt(ξ, τ)]

]
Distribute the operators on both sides.

−∂φt
∂τ

= 4 +
1

ξ

d

dξ

(
ξ
dφ∞
dξ

)
− 1

ξ

∂

∂ξ

(
ξ
∂φt
∂ξ

)
If we set

4 +
1

ξ

d

dξ

(
ξ
dφ∞
dξ

)
= 0, (5)

then the previous equation reduces to

−∂φt
∂τ

= −1

ξ

∂

∂ξ

(
ξ
∂φt
∂ξ

)
. (6)

Solve equation (5) for the steady-state velocity profile.

1

ξ

d

dξ

(
ξ
dφ∞
dξ

)
= −4

Multiply both sides by ξ.
d

dξ

(
ξ
dφ∞
dξ

)
= −4ξ

Integrate both sides with respect to ξ.

ξ
dφ∞
dξ

= −2ξ2 + C1

Divide both sides by ξ.
dφ∞
dξ

= −2ξ +
C1

ξ

Integrate both sides with respect to ξ once more.

φ∞(ξ) = −ξ2 + C1 ln ξ + C2
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The boundary conditions, φ(1, τ) = 0 and φ(κ, τ) = 0, hold for all time, including the steady
state. Apply φ∞(1) = 0 and φ∞(κ) = 0 to determine C1 and C2.

φ∞(1) = −1 + C2 = 0

φ∞(κ) = −κ2 + C1 lnκ+ C2 = 0

Solving the system yields C1 = −(1− κ2)/ lnκ and C2 = 1. Thus,

φ∞(ξ) = 1− ξ2 − (1− κ2) ln ξ

lnκ
.

Now we will solve equation (6) for φt. Multiply both sides of it by −1.

∂φt
∂τ

=
1

ξ

∂

∂ξ

(
ξ
∂φt
∂ξ

)
To find the initial and boundary conditions associated with it, substitute
φ(ξ, τ) = φ∞(ξ)− φt(ξ, τ) into equations (2), (3), and (4).

φ(1, τ) = φ∞(1)− φt(1, τ) = 0− φt(1, τ) = 0 → φt(1, τ) = 0

φ(κ, τ) = φ∞(κ)− φt(κ, τ) = 0− φt(κ, τ) = 0 → φt(κ, τ) = 0

φ(ξ, 0) = φ∞(ξ)− φt(ξ, 0) = 0 → φt(ξ, 0) = φ∞(ξ)

The PDE for φt and its boundary conditions are linear and homogeneous, so the problem can be
solved with the method of separation of variables. Assume a product solution of the form
φt = X(ξ)T (τ) and plug it into the PDE

XT ′ =
1

ξ

∂

∂ξ

(
ξX ′T

)
and the boundary conditions.

φt(1, τ) = 0 → X(1)T (τ) = 0 → X(1) = 0

φt(κ, τ) = 0 → X(κ)T (τ) = 0 → X(κ) = 0

Now separate variables in the PDE: bring the functions of τ to the left side and bring the
functions of ξ to the right side.

T ′

T
=

1

ξX

d

dξ

(
ξX ′

)
The only way a function of τ can be equal to a function of ξ is if both are equal to a constant λ.

T ′

T
=

1

ξX

d

dξ

(
ξX ′

)
= λ

Values of λ for which the boundary conditions are satisfied are known as the eigenvalues, and the
nontrivial functions associated with them are known as the eigenfunctions.

Determination of Positive Eigenvalues: λ = µ2

Assuming λ is positive, the differential equation for T becomes

T ′

T
= µ2.
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Multiply both sides by T .
T ′ = µ2T

The general solution is written in terms of the exponential function.

T (τ) = C3e
µ2τ

The possibility that there are positive eigenvalues can be dismissed here because T (τ) diverges as
τ →∞.

Determination of the Zero Eigenvalue: λ = 0

Assuming λ is zero, the differential equation for X becomes

1

ξX

d

dξ

(
ξX ′

)
= 0

Multiply both sides by ξX.
d

dξ

(
ξX ′

)
= 0

Integrate both sides with respect to ξ.
ξX ′ = C4

Divide both sides by ξ.

X ′ =
C4

ξ

Integrate both sides with respect to ξ once more.

X(ξ) = C4 ln ξ + C5

Apply the boundary conditions here to determine C4 and C5.

X(1) = C5 = 0

X(κ) = C4 lnκ+ C5 = 0

Since C5 = 0, the second equation gives C4 = 0, which results in the trivial solution. Zero is not
an eigenvalue.

Determination of Negative Eigenvalues: λ = −γ2

Assuming λ is negative, the differential equation for X becomes

1

ξX

d

dξ

(
ξX ′

)
= −γ2.

Multiply both sides by ξ2X.

ξ
d

dξ

(
ξX ′

)
= −γ2ξ2X

Expand the left side and bring γ2ξ2X to the left.

ξ2X ′′ + ξX ′ + γ2ξ2X = 0
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This is the parametric form of Bessel’s equation of order zero. The general solution is written in
terms of zero-order Bessel functions of the first kind J0(γξ) and second kind Y0(γξ).

X(ξ) = C6J0(γξ) + C7Y0(γξ)

Apply the boundary conditions here to determine C6 and C7.

X(1) = C6J0(γ) + C7Y0(γ) = 0

X(κ) = C6J0(γκ) + C7Y0(γκ) = 0

Solve the first equation for C7

C7 = −C6
J0(γ)

Y0(γ)

and plug the result into the second equation.

C6J0(γκ)− C6
J0(γ)

Y0(γ)
Y0(γκ) = 0

To avoid getting the trivial solution, we insist that C6 6= 0. Write the two terms on the left side as
one.

C6
J0(γκ)Y0(γ)− J0(γ)Y0(γκ)

Y0(γ)
= 0

Hence, γ is defined implicitly by J0(γκ)Y0(γ)− J0(γ)Y0(γκ) = 0. J0 and Y0 are oscillatory
functions, so there are infinitely many values of γ. If γn denotes the nth zero of the function, then

J0(γnκ)Y0(γn)− J0(γn)Y0(γnκ) = 0, n = 1, 2, . . . .

The eigenfunctions associated with these eigenvalues for λ are

X(ξ) = C6J0(γξ) + C7Y0(γξ)

= C6J0(γξ)− C6
J0(γ)

Y0(γ)
Y0(γξ)

=
C6

Y0(γ)
[J0(γξ)Y0(γ)− J0(γ)Y0(γξ)]

= C8[J0(γξ)Y0(γ)− J0(γ)Y0(γξ)] → Xn(ξ) = J0(γnξ)Y0(γn)− J0(γn)Y0(γnξ), n = 1, 2, . . . .

Now the ODE for T will be solved.
T ′

T
= −γ2

Multiply both sides by T .
T ′ = −γ2T

The general solution is written in terms of the exponential function.

T (τ) = C9e
−γ2τ → Tn(τ) = e−γ

2
nτ , n = 1, 2, . . .

According to the principle of superposition, the general solution to the PDE for φt is a linear
combination of the eigenfunctions Xn(ξ)Tn(τ) over all the eigenvalues.

φt(ξ, τ) =
∞∑
n=1

Ane
−γ2nτXn(ξ)
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Apply the initial condition here to determine An.

φt(ξ, 0) =
∞∑
n=1

AnXn(ξ) = φ∞(ξ)

Substitute the steady-state velocity distribution found for φ∞.

∞∑
n=1

AnXn(ξ) = 1− ξ2 − (1− κ2) ln ξ

lnκ

Multiply both sides by Xm(ξ)ξ, where m is an integer.

∞∑
n=1

AnXn(ξ)Xm(ξ)ξ =

[
1− ξ2 − (1− κ2) ln ξ

lnκ

]
Xm(ξ)ξ

Integrate both sides with respect to ξ from κ to 1.

ˆ 1

κ

∞∑
n=1

AnXn(ξ)Xm(ξ)ξ dξ =

ˆ 1

κ

[
1− ξ2 − (1− κ2) ln ξ

lnκ

]
Xm(ξ)ξ dξ

Bring the constants in front of the integral on the left side.

∞∑
n=1

An

ˆ 1

κ
Xn(ξ)Xm(ξ)ξ dξ =

ˆ 1

κ

[
1− ξ2 − (1− κ2) ln ξ

lnκ

]
Xm(ξ)ξ dξ

Because the Xn(ξ) satisfy an ODE of the Sturm-Liouville form, they are guaranteed to be
orthogonal with respect to the weight ξ, meaning that the integral on the left side is zero for
n 6= m. As a result, every term in the infinite series vanishes except for one: n = m.

An

ˆ 1

κ
X2
n(ξ)ξ dξ =

ˆ 1

κ

[
1− ξ2 − (1− κ2) ln ξ

lnκ

]
Xn(ξ)ξ dξ

Solve this equation for An.

An =

ˆ 1

κ

[
1− ξ2 − (1− κ2) ln ξ

lnκ

]
Xn(ξ)ξ dξ

ˆ 1

κ
X2
n(ξ)ξ dξ

The dimensionless velocity is then

φ(ξ, τ) = 1− ξ2 − (1− κ2) ln ξ

lnκ
−
∞∑
n=1

Ane
−γ2nτXn(ξ).

Changing back to the original variables, the unsteady velocity distribution for t > 0 in an annulus
due to a sudden impressed pressure gradient is therefore

vz(r, t) =
(P0 −PL)R2

4µL

[
1−

( r
R

)2
− 1− κ2

ln(1/κ)
ln

(
R

r

)
−
∞∑
n=1

An exp

(
−γ2n

µt

ρR2

)
Xn

( r
R

)]
.
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Figure 1: This figure shows the dimensionless velocity distribution φ versus ξ for κ = 0.5 when
τ = 0, τ = 0.006, τ = 0.0125, τ = 0.02, τ = 0.03, and τ = 0.05 in red, orange, yellow, green, blue,
and purple, respectively. In black is the steady-state velocity distribution. The profiles are only
approximate, as only the first 20 terms in the infinite series have been used. The integrals in An
and the values of γ were calculated numerically. Notice that the maximum velocity occurs at a
smaller and smaller radius as time goes on.
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Figure 2: This figure shows the right side of Figure 1 zoomed in. The dashed line marks the center
of the annular slit.
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Figure 3: This figure shows a graph of y = J0(γκ)Y0(γ)− J0(γ)Y0(γκ) versus γ for κ = 0.5.
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Part (b)

Since the flow is unsteady, tangential, and independent of height, we assume that the velocity
varies as a function of radius and time and that the fluid moves only in the θ-direction.

v = vθ(r, t)θ̂

If we assume the fluid does not slip on the walls, then it has the wall’s velocity at the inner and
outer radii, r = κR and r = R, respectively. Let the angular velocity vector be denoted as
Ω = Ωẑ. The boundary conditions are then

Boundary Condition 1: vθ(κR, t) = 0

Boundary Condition 2: vθ(R, t) = ΩR.

The fluid starts from rest, so the velocity is zero initially.

Initial Condition: vθ(r, 0) = 0

The equation of continuity results by considering a mass balance over a volume element that the
fluid is flowing through. Assuming the fluid density ρ is constant, the equation simplifies to

∇ · v = 0.

The equation of motion results by considering a momentum balance over a volume element that
the fluid is flowing through. Assuming the fluid viscosity µ is also constant, the equation
simplifies to the Navier-Stokes equation.

∂

∂t
ρv +∇ · ρvv = −∇p+ µ∇2v + ρg

As this is a vector equation, it actually represents three scalar equations—one for each variable in
the chosen coordinate system. Using cylindrical coordinates is the appropriate choice for this
problem, so the two previous equations will be used in (r, θ, z). From Appendix B.4 on page 846,
the continuity equation becomes

1

r

∂

∂r
(rvr)︸ ︷︷ ︸

= 0

+
1

r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+
∂vz
∂z︸︷︷︸
= 0

= 0,

which doesn’t tell us anything. From Appendix B.6 on page 848, the Navier-Stokes equation
yields the following three scalar equations in cylindrical coordinates.

ρ

(
∂vr
∂t︸︷︷︸
= 0

+ vr
∂vr
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vr
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vr
∂z︸ ︷︷ ︸

= 0

−
v2θ
r

)
= −∂p

∂r
+ µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
︸ ︷︷ ︸

= 0

+
1

r2
∂2vr
∂θ2︸ ︷︷ ︸

= 0

+
∂2vr
∂z2︸ ︷︷ ︸
= 0

− 2

r2
∂vθ
∂θ︸ ︷︷ ︸

= 0

]
+ ρgr︸︷︷︸

= 0

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vθ
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vθ
∂z︸ ︷︷ ︸

= 0

+
vrvθ
r︸︷︷︸
= 0

)
= −1

r

∂p

∂θ︸ ︷︷ ︸
= 0

+µ

[
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+

1

r2
∂2vθ
∂θ2︸ ︷︷ ︸

= 0

+
∂2vθ
∂z2︸ ︷︷ ︸
= 0

+
2

r2
∂vr
∂θ︸ ︷︷ ︸

= 0

]
+ ρgθ︸︷︷︸

= 0

ρ

(
∂vz
∂t︸︷︷︸
= 0

+ vr
∂vz
∂r︸ ︷︷ ︸

= 0

+
vθ
r

∂vz
∂θ︸ ︷︷ ︸

= 0

+ vz
∂vz
∂z︸ ︷︷ ︸

= 0

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
︸ ︷︷ ︸

= 0

+
1

r2
∂2vz
∂θ2︸ ︷︷ ︸

= 0

+
∂2vz
∂z2︸ ︷︷ ︸
= 0

]
+ ρgz
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The relevant equation for the velocity is the θ-equation, which has simplified considerably from
the assumption that v = vθ(r, t)θ̂.

ρ
∂vθ
∂t

= µ
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
The PDE and its associated initial and boundary conditions will now be nondimensionalized.
Divide both sides by µ and introduce R3 on the right side.

ρ

µ

∂vθ
∂t

= R
∂

∂r

[
R

r
R
∂

∂r

( r
R
vθ

)] 1

R2

Multiply both sides by R2.
ρR2

µ

∂vθ
∂t

= R
∂

∂r

[
R

r
R
∂

∂r

( r
R
vθ

)]
Let ξ and τ be defined as in part (a).

∂vθ
∂τ

=
∂

∂ξ

(
1

ξ

∂

∂ξ
(ξvθ)

)
Divide both sides by ΩR.

∂

∂τ

vθ
ΩR

=
∂

∂ξ

[
1

ξ

∂

∂ξ

(
ξ
vθ

ΩR

)]
Introduce a new nondimensional velocity ψ.

ψ =
vθ

ΩR

Then the nondimensional PDE is
∂ψ

∂τ
=

∂

∂ξ

(
1

ξ

∂

∂ξ
(ξψ)

)
and its initial and boundary conditions are

ψ(κ, τ) = 0 (7)

ψ(1, τ) = 1 (8)

ψ(ξ, 0) = 0. (9)

As a result of the spinning outer cylinder, the fluid starts to move and eventually reaches a steady
state. ψ can be thought to have an equilibrium part ψ∞(ξ) and a transient part ψt(ξ, τ) that dies
out as τ increases. Substitute ψ(ξ, τ) = ψ∞(ξ)− ψt(ξ, τ) into the PDE.

∂

∂τ
[ψ∞(ξ)− ψt(ξ, τ)] =

∂

∂ξ

(
1

ξ

∂

∂ξ
(ξ[ψ∞(ξ)− ψt(ξ, τ)])

)
Distribute the operators.

−∂ψt
∂τ

=
d

dξ

(
1

ξ

d

dξ
(ξψ∞)

)
− ∂

∂ξ

(
1

ξ

∂

∂ξ
(ξψt)

)
If we set

d

dξ

(
1

ξ

d

dξ
(ξψ∞)

)
= 0, (10)
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then the previous equation becomes

−∂ψt
∂τ

= − ∂

∂ξ

(
1

ξ

∂

∂ξ
(ξψt)

)
. (11)

Solve equation (10) for the steady-state velocity profile first. Integrate both sides of it with
respect to ξ.

1

ξ

d

dξ
(ξψ∞) = C10

Multiply both sides by ξ.
d

dξ
(ξψ∞) = C10ξ

Integrate both sides with respect to ξ once more.

ξψ∞ = C10
ξ2

2
+ C11

Divide both sides by ξ.

ψ∞(ξ) = C10
ξ

2
+
C11

ξ

The boundary conditions, ψ(κ, τ) = 0 and ψ(1, τ) = 1, hold for all time, including the steady
state. Apply ψ∞(κ) = 0 and ψ∞(1) = 1 to determine C10 and C11.

ψ∞(κ) = C10
κ

2
+
C11

κ
= 0

ψ∞(1) = C10
1

2
+ C11 = 1

Solving this system of equations gives

C10 =
2

1− κ2
and C11 = − κ2

1− κ2
.

So the steady-state velocity distribution is

ψ∞(ξ) =
2

1− κ2
ξ

2
− κ2

1− κ2
1

ξ

=
ξ

1− κ2

(
1− κ2

ξ2

)
=

ξ

1− κ2

[
1−

(
κ

ξ

)2
]
.

Now we will solve equation (11) for ψt. Multiply both sides of it by −1.

∂ψt
∂τ

=
∂

∂ξ

(
1

ξ

∂

∂ξ
(ξψt)

)
. (11)

To find the initial and boundary conditions associated with it, substitute
ψ(ξ, τ) = ψ∞(ξ)− ψt(ξ, τ) into equations (7), (8), and (9).

ψ(κ, τ) = ψ∞(κ)− ψt(κ, τ) = 0− ψt(κ, τ) = 0 → ψt(κ, τ) = 0

ψ(1, τ) = ψ∞(1)− ψt(1, τ) = 1− ψt(1, τ) = 1 → ψt(1, τ) = 0

ψ(ξ, 0) = ψ∞(ξ)− ψt(ξ, 0) = 0 → ψt(ξ, 0) = ψ∞(ξ)
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The PDE for ψt and its boundary conditions are linear and homogeneous, so the problem can be
solved with the method of separation of variables. Assume a product solution of the form
ψt = F (ξ)G(τ) and plug it into the PDE

FG′ =
∂

∂ξ

(
1

ξ

∂

∂ξ
(ξFG)

)
and the boundary conditions.

ψt(κ, τ) = 0 → F (κ)G(τ) = 0 → F (κ) = 0

ψt(1, τ) = 0 → F (1)G(τ) = 0 → F (1) = 0

Now separate variables in the PDE: bring the constants and functions of τ to the left side and
bring the functions of ξ to the right side.

G′

G
=

1

F

d

dξ

(
1

ξ

d

dξ
(ξF )

)
The only way a function of τ can be equal to a function of ξ is if both are equal to a constant η.

G′

G
=

1

F

d

dξ

(
1

ξ

d

dξ
(ξF )

)
= η

Values of η for which the boundary conditions are satisfied are known as the eigenvalues, and the
nontrivial functions associated with them are known as the eigenfunctions.

Determination of Positive Eigenvalues: η = α2

Assuming η is positive, the differential equation for G becomes

G′

G
= α2.

Multiply both sides by G.
G′ = α2G

The general solution is written in terms of the exponential function.

G(τ) = C12e
α2t

The possibility that there are positive eigenvalues can be dismissed here because G(τ) diverges as
τ →∞.

Determination of the Zero Eigenvalue: η = 0

Assuming η is zero, the differential equation for F becomes

1

F

d

dξ

(
1

ξ

d

dξ
(ξF )

)
= 0.

Multiply both sides by F .
d

dξ

(
1

ξ

d

dξ
(ξF )

)
= 0
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Integrate both sides with respect to ξ.

1

ξ

d

dξ
(ξF ) = C13

Multiply both sides by ξ.
d

dξ
(ξF ) = C13ξ

Integrate both sides with respect to ξ once more.

ξF = C13
ξ2

2
+ C14

Divide both sides by r.

F (ξ) = C13
ξ

2
+
C14

ξ

Apply the boundary conditions here to determine C13 and C14.

F (κ) = C13
κ

2
+
C14

κ
= 0

F (1) = C13
1

2
+ C14 = 0

Solving the system yields C13 = 0 and C14 = 0, which results in the trivial solution. Zero is not
eigenvalue.

Determination of Negative Eigenvalues: η = −β2

Assuming η is negative, the differential equation for F becomes

1

F

d

dξ

(
1

ξ

d

dξ
(ξF )

)
= −β2.

Multiply both sides by ξ2F .

ξ2
d

dξ

(
1

ξ

d

dξ
(ξF )

)
= −β2ξ2F

Expand the left side.
ξ2F ′′ + ξF ′ − F = −β2ξ2F

Bring β2ξ2F to the left side.
ξ2F ′′ + ξF ′ + (β2ξ2 − 1)F = 0

This is the parametric form of Bessel’s equation of order one. The general solution is written in
terms of first-order Bessel functions of the first kind J1(βξ) and second kind Y1(βξ).

F (ξ) = C15J1(βξ) + C16Y1(βξ)

Apply the boundary conditions here to determine C15 and C16.

F (κ) = C15J1(βκ) + C16Y1(βκ) = 0

F (1) = C15J1(β) + C16Y1(β) = 0
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Solve the second equation for C16

C16 = −C15
J1(β)

Y1(β)

and plug the result into the first equation.

C15J1(βκ)− C15
J1(β)

Y1(β)
Y1(βκ) = 0

To avoid getting the trivial solution, we insist that C15 6= 0. Write the two terms on the left side
as one.

C15
J1(βκ)Y1(β)− J1(β)Y1(βκ)

Y1(β)
= 0

Hence, β is defined implicitly by J1(βκ)Y1(β)− J1(β)Y1(βκ) = 0. J1 and Y1 are oscillatory
functions, so there are infinitely many values of β. If βn denotes the nth zero of the function, then

J1(βnκ)Y1(βn)− J1(βn)Y1(βnκ) = 0, n = 1, 2, . . . .

The eigenfunctions associated with these eigenvalues for λ are

F (ξ) = C15J1(βξ) + C16Y1(βξ)

= C15J1(βξ)− C15
J1(β)

Y1(β)
Y1(βξ)

=
C15

Y1(β)
[J1(βξ)Y1(β)− J1(β)Y1(βξ)]

= C17[J1(βξ)Y1(β)− J1(β)Y1(βξ)]

→ Fn(ξ) = J1(βnξ)Y1(βn)− J1(βn)Y1(βnξ), n = 1, 2, . . . .

Now the ODE for G will be solved.
G′

G
= −β2

Multiply both sides by G.
G′ = −β2G

The general solution is written in terms of the exponential function.

G(τ) = e−β
2τ → Gn(τ) = e−β

2
nτ , n = 1, 2, . . .

According to the principle of superposition, the general solution for ψt is a linear combination of
eigenfunctions over all the eigenvalues.

ψt(ξ, τ) =
∞∑
n=1

Bne
−β2

nτFn(ξ)

Apply the initial condition here to determine Bn.

ψt(ξ, 0) =

∞∑
n=1

BnFn(ξ) = ψ∞(ξ)
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Substitute the steady-state velocity distribution found for ψ∞.

∞∑
n=1

BnFn(ξ) =
ξ

1− κ2

[
1−

(
κ

ξ

)2
]

Multiply both sides by Fm(ξ)ξ, where m is an integer.

∞∑
n=1

BnFn(ξ)Fm(ξ)ξ =
ξ

1− κ2

[
1−

(
κ

ξ

)2
]
Fm(ξ)ξ

Integrate both sides with respect to ξ from κ to 1 and distribute ξ2.

ˆ 1

κ

∞∑
n=1

BnFn(ξ)Fm(ξ)ξ dξ =

ˆ 1

κ

ξ2 − κ2

1− κ2
Fm(ξ) dξ

Bring the constants in front of the integral on the left side.

∞∑
n=1

Bn

ˆ 1

κ
Fn(ξ)Fm(ξ)ξ dξ =

ˆ 1

κ

ξ2 − κ2

1− κ2
Fm(ξ) dξ

Because the Fn(ξ) satisfy an ODE of the Sturm-Liouville form, they are guaranteed to be
orthogonal with respect to the weight ξ, meaning that the integral on the left side is zero for
n 6= m. As a result, every term in the infinite series vanishes except for one: n = m.

Bn

ˆ 1

κ
F 2
n(ξ)ξ dξ =

ˆ 1

κ

ξ2 − κ2

1− κ2
Fn(ξ) dξ

Solve this equation for Bn.

Bn =

ˆ 1

κ

ξ2 − κ2

1− κ2
Fn(ξ) dξ

ˆ 1

κ
F 2
n(ξ)ξ dξ

The dimensionless velocity is then

ψ(ξ, τ) =
ξ

1− κ2

[
1−

(
κ

ξ

)2
]
−
∞∑
n=1

Bne
−β2

nτFn(ξ).

Changing back to the original variables, the velocity distribution for t > 0 in an annulus with the
outer radius rotating at angular velocity Ωẑ is therefore

vθ(r, t) =
Ωr

1− κ2

[
1−

(
κR

r

)2
]
−
∞∑
n=1

Bn exp

(
−β2n

µ

ρR2
t

)
Fn

( r
R

)
.
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Figure 4: This figure shows the dimensionless velocity distribution ψ versus ξ for κ = 0.5 when
τ = 0, τ = 0.0001, τ = 0.0007, τ = 0.0025, τ = 0.0075, and τ = 0.02 in red, orange, yellow, green,
blue, and purple, respectively. In black is the steady-state velocity distribution. The profiles are
only approximate, as only the first 20 terms in the infinite series have been used. The integrals in
Bn and the values of β were calculated numerically. Notice that the steady-state velocity is not
linear.
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Figure 5: This figure shows the right side of Figure 4 zoomed in.
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Figure 6: This figure shows a graph of y = J1(βκ)Y1(β)− J1(β)Y1(βκ) versus β for κ = 0.5.
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