Problem 35

In each of Problems 34 through 37, construct a first order linear differential equation whose solutions have the required behavior as $t \to \infty$. Then solve your equation and confirm that the solutions do indeed have the specified property.

All solutions are asymptotic to the line y = 3 - t as $t \to \infty$.

Solution

The rate of change of y will become -1 as t gets big enough, so we choose

$$y' + y = (-1) + (3 - t)$$

= 2 - t.

This is a first-order linear inhomogeneous ODE, so it can be solved by multiplying both sides by an integrating factor I.

$$I = \exp\left(\int^t 1 \, ds\right) = e^t$$

Proceed with the multiplication.

$$e^t y' + e^t y = e^t (2 - t)$$

The left side can be written as d/dt(Iy) using the product rule.

$$\frac{d}{dt}(e^t y) = e^t (2 - t)$$

Integrate both sides with respect to t.

$$e^{t}y = \int^{t} e^{s}(2-s) ds + C$$

$$= \int^{t} 2e^{s} ds - \int^{t} se^{s} ds + C$$

$$= 2e^{t} - \int^{t} se^{s} ds + C$$

$$(1)$$

Use integration by parts to evaluate the remaining integral.

$$\int^t se^s ds = \int^t s \frac{d}{ds} (e^s) ds$$
$$= t(e^t) - \int^t (1)e^s ds$$
$$= te^t - e^t$$
$$= e^t (t - 1)$$

Substitute this result into equation (1).

$$e^{t}y = 2e^{t} - [e^{t}(t-1)] + C$$

= $2e^{t} - te^{t} + e^{t} + C$
= $e^{t}(3-t) + C$

Divide both sides by e^t to obtain the general solution for y.

$$y(t) = 3 - t + \frac{C}{e^t}$$

Take the limit of both sides as $t \to \infty$.

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} (3 - t) + \underbrace{\lim_{t \to \infty} \frac{C}{e^t}}_{= 0}$$

Therefore, all solutions are asymptotic to the line y=3-t as $t\to\infty$.