Problem 18

Consider an insulated box (a building, perhaps) with internal temperature u(t). According to Newton's law of cooling, u satisfies the differential equation

$$\frac{du}{dt} = -k[u - T(t)],\tag{i}$$

where T(t) is the ambient (external) temperature. Suppose that T(t) varies sinusoidally; for example, assume that $T(t) = T_0 + T_1 \cos \omega t$.

- (a) Solve Eq. (i) and express u(t) in terms of t, k, T_0 , T_1 , and ω . Observe that part of your solution approaches zero as t becomes large; this is called the transient part. The remainder of the solution is called the steady state; denote it by S(t).
- (b) Suppose that t is measured in hours and that $\omega = \pi/12$, corresponding to a period of 24 h for T(t). Further, let $T_0 = 60$ °F, $T_1 = 15$ °F, and k = 0.2/h. Draw graphs of S(t) and T(t) versus t on the same axes. From your graph estimate the amplitude R of the oscillatory part of S(t). Also estimate the time lag τ between corresponding maxima of T(t) and S(t).
- (c) Let k, T_0 , T_1 , and ω now be unspecified. Write the oscillatory part of S(t) in the form $R\cos[\omega(t-\tau)]$. Use trigonometric identities to find expressions for R and τ . Let T_1 and ω have the values given in part (b), and plot graphs of R and τ versus k.

Solution

Part (a)

Distribute k in the ODE.

$$\frac{du}{dt} = -ku + kT(t)$$

Bring ku to the left side and substitute $T(t) = T_0 + T_1 \cos \omega t$.

$$\frac{du}{dt} + ku = kT_0 + kT_1 \cos \omega t$$

This is a first-order linear inhomogeneous ODE, so it can be solved by multiplying both sides by an integrating factor I.

$$I = \exp\left(\int^t k \, ds\right) = e^{kt}$$

Proceed with the multiplication.

$$e^{kt}\frac{du}{dt} + ke^{kt}u = kT_0e^{kt} + kT_1e^{kt}\cos\omega t$$

The left side can be written as d/dt(Iu) by the product rule.

$$\frac{d}{dt}(e^{kt}u) = kT_0e^{kt} + kT_1e^{kt}\cos\omega t$$

Integrate both sides with respect to t.

$$e^{kt}u = \int_{-\infty}^{\infty} (kT_0e^{ks} + kT_1e^{ks}\cos\omega s) ds + C$$

Distribute the integral and bring the constants in front of them.

$$e^{kt}u = T_0e^{kt} + kT_1 \int_0^t e^{ks} \cos \omega s \, ds + C \tag{1}$$

Use integration by parts twice for the remaining integral.

$$\begin{split} \int^t e^{ks} \cos \omega s \, ds &= \int^t e^{ks} \frac{d}{ds} \left(\frac{1}{\omega} \sin \omega s \right) ds \\ &= e^{ks} \left(\frac{1}{\omega} \sin \omega s \right) \Big|^t - \int^t k e^{ks} \frac{1}{\omega} \sin \omega s \, ds \\ &= \frac{e^{kt} \sin \omega t}{\omega} - \frac{k}{\omega} \int^t e^{ks} \frac{d}{ds} \left(-\frac{1}{\omega} \cos \omega s \right) ds \\ &= \frac{e^{kt} \sin \omega t}{\omega} - \frac{k}{\omega} \left[e^{ks} \left(-\frac{1}{\omega} \cos \omega s \right) \Big|^t - \int^t k e^{ks} \left(-\frac{1}{\omega} \cos \omega s \right) ds \right] \\ &= \frac{e^{kt} \sin \omega t}{\omega} - \frac{k}{\omega} \left[e^{kt} \left(-\frac{1}{\omega} \cos \omega t \right) + \frac{k}{\omega} \int^t e^{ks} \cos \omega s \, ds \right] \\ &= \frac{e^{kt} \sin \omega t}{\omega} + \frac{k}{\omega^2} e^{kt} \cos \omega t - \frac{k^2}{\omega^2} \int^t e^{ks} \cos \omega s \, ds \end{split}$$

Solve for the integral.

$$\left(1 + \frac{k^2}{\omega^2}\right) \int^t e^{ks} \cos \omega s \, ds = \frac{e^{kt}}{\omega^2} (k \cos \omega t + \omega \sin \omega t)$$

As a result,

$$\int^t e^{ks} \cos \omega s \, ds = \frac{e^{kt}}{k^2 + \omega^2} (k \cos \omega t + \omega \sin \omega t).$$

Substitute this result into equation (1).

$$e^{kt}u = T_0e^{kt} + kT_1\frac{e^{kt}}{k^2 + \omega^2}(k\cos\omega t + \omega\sin\omega t) + C$$

Divide both sides by e^{kt} to get the general solution.

$$u(t) = \underbrace{T_0 + T_1 \frac{k}{k^2 + \omega^2} (k \cos \omega t + \omega \sin \omega t)}_{\text{steady}} + \underbrace{Ce^{-kt}}_{\text{transient}}$$

It can be thought of as the sum of a steady term, one that remains as $t \to \infty$, and a transient term, one that dies out as $t \to \infty$. Define S(t) to be the steady part.

$$S(t) = T_0 + T_1 \frac{k}{k^2 + \omega^2} (k \cos \omega t + \omega \sin \omega t)$$

Part (b)

Let $\omega = \pi/12$, $T_0 = 60$, $T_1 = 15$, and k = 0.2. Then

$$S(t) = 60 + 15 \frac{0.2}{0.04 + \frac{\pi^2}{144}} \left(0.2 \cos \frac{\pi t}{12} + \frac{\pi}{12} \sin \frac{\pi t}{12} \right)$$
$$= 60 + \frac{3}{5 \left(\frac{1}{25} + \frac{\pi^2}{144} \right)} \cos \frac{\pi t}{12} + \frac{\pi}{4 \left(\frac{1}{25} + \frac{\pi^2}{144} \right)} \sin \frac{\pi t}{12}$$

and

$$T(t) = 60 + 15\cos\frac{\pi t}{12}.$$

Below is a plot of S(t) and T(t) versus t.

There's no need to estimate the amplitude from the graph. Let

$$A\cos\phi = \frac{3}{5\left(\frac{1}{25} + \frac{\pi^2}{144}\right)}$$
$$A\sin\phi = \frac{\pi}{4\left(\frac{1}{25} + \frac{\pi^2}{144}\right)}$$

and solve the two equations for the two unknowns, A and ϕ . Divide both sides of the second equation by those of the first.

$$\tan \phi = \frac{5\pi}{12}$$

Draw the implied triangle to determine $\cos \phi$.

Now A can be found.

$$A\left(\frac{12}{\sqrt{25\pi^2 + 144}}\right) = \frac{3}{5\left(\frac{1}{25} + \frac{\pi^2}{144}\right)} \quad \to \quad A = \frac{180}{\sqrt{25\pi^2 + 144}}$$

Consequently,

$$S(t) = 60 + A\cos\phi\cos\frac{\pi t}{12} + A\sin\phi\sin\frac{\pi t}{12}$$

$$= 60 + A\cos\left(\frac{\pi t}{12} - \phi\right)$$

$$= 60 + \frac{180}{\sqrt{25\pi^2 + 144}}\cos\left(\frac{\pi t}{12} - \tan^{-1}\frac{5\pi}{12}\right)$$

$$= 60 + \frac{180}{\sqrt{25\pi^2 + 144}}\cos\left[\frac{\pi}{12}\left(t - \frac{12}{\pi}\tan^{-1}\frac{5\pi}{12}\right)\right].$$

The amplitude is

$$R = \frac{180}{\sqrt{25\pi^2 + 144}} \approx 9.11$$
°F,

and the graph of T(t) lags behind that of S(t) by

$$\tau = \frac{12}{\pi} \tan^{-1} \frac{5\pi}{12} \approx 3.51 \text{ hours.}$$

Part (c)

Recall that S(t) is the steady part of the temperature.

$$S(t) = T_0 + T_1 \frac{k}{k^2 + \omega^2} (k \cos \omega t + \omega \sin \omega t)$$
$$= T_0 + T_1 \frac{k^2}{k^2 + \omega^2} \cos \omega t + T_1 \frac{k\omega}{k^2 + \omega^2} \sin \omega t$$

Let

$$R\cos\psi = T_1 \frac{k^2}{k^2 + \omega^2}$$
$$R\sin\psi = T_1 \frac{k\omega}{k^2 + \omega^2}$$

and solve the two equations for the two unknowns, R and ψ . Divide both sides of the second equation by those of the first.

$$\tan \psi = \frac{\omega}{k}$$

Draw the implied triangle to determine $\cos \psi$.

Now R can be found.

$$R\left(\frac{k}{\sqrt{k^2 + \omega^2}}\right) = T_1 \frac{k^2}{k^2 + \omega^2} \quad \to \quad R = T_1 \frac{k}{\sqrt{k^2 + \omega^2}}$$

Therefore,

$$S(t) = T_0 + R\cos\psi\cos\omega t + R\sin\psi\sin\omega t$$

$$= T_0 + R\cos(\omega t - \psi)$$

$$= T_0 + T_1 \frac{k}{\sqrt{k^2 + \omega^2}} \cos\left(\omega t - \tan^{-1}\frac{\omega}{k}\right)$$

$$= T_0 + T_1 \frac{k}{\sqrt{k^2 + \omega^2}} \cos\left[\omega\left(t - \frac{1}{\omega}\tan^{-1}\frac{\omega}{k}\right)\right]$$

and

$$\tau = \frac{1}{\omega} \tan^{-1} \frac{\omega}{k}.$$

If $T_1 = 15$ and $\omega = \pi/12$, then

$$R = 15 \frac{k}{\sqrt{k^2 + \frac{\pi^2}{144}}}$$
$$\tau = \frac{12}{\pi} \tan^{-1} \frac{\pi}{12k}.$$

