Problem 9

In each of Problems 7 through 16, find the general solution of the given differential equation.

$$y'' + 2y' - 8y = 0$$

Solution

Since this is a linear homogeneous constant-coefficient ODE, the solution is of the form $y = e^{rt}$.

$$y = e^{rt} \rightarrow y' = re^{rt} \rightarrow y'' = r^2 e^{rt}$$

Substitute these expressions into the ODE.

$$r^2e^{rt} + 2(re^{rt}) - 8(e^{rt}) = 0$$

Divide both sides by e^{rt} .

$$r^{2} + 2r - 8 = 0$$
$$(r+4)(r-2) = 0$$
$$r = \{-4, 2\}$$

Two solutions to the ODE are $y = e^{-4t}$ and $y = e^{2t}$, so the general solution is

$$y(t) = C_1 e^{-4t} + C_2 e^{2t},$$

a linear combination of the two.