Problem 9

In each of Problems 1 through 14, find the general solution of the given differential equation.

$$2y'' + 3y' + y = t^2 + 3\sin t$$

Solution

Because this ODE is linear, the general solution can be expressed as a sum of the complementary solution $y_c(t)$ and the particular solution $y_p(t)$.

$$y(t) = y_c(t) + y_p(t)$$

The complementary solution satisfies the associated homogeneous equation.

$$2y_c'' + 3y_c' + y_c = 0 (1)$$

This is a homogeneous ODE with constant coefficients, so the solution is of the form $y_c = e^{rt}$.

$$y_c = e^{rt} \rightarrow y_c' = re^{rt} \rightarrow y_c'' = r^2 e^{rt}$$

Substitute these expressions into the ODE.

$$2(r^2e^{rt}) + 3(re^{rt}) + e^{rt} = 0$$

Divide both sides by e^{rt} .

$$2r^{2} + 3r + 1 = 0$$
$$(2r+1)(r+1) = 0$$
$$r = \left\{-1, -\frac{1}{2}\right\}$$

Two solutions to equation (1) are then $y_c = e^{-t}$ and $y_c = e^{-t/2}$. By the principle of superposition, the general solution is a linear combination of these two.

$$y_c(t) = C_1 e^{-t} + C_2 e^{-t/2}$$

On the other hand, the particular solution satisfies

$$2y_p'' + 3y_p' + y_p = t^2 + 3\sin t.$$

The inhomogeneous term has two components, a monomial and a sine function. Since both odd and even derivatives are present, both sine and cosine need to be included in the trial solution. For the monomial, all powers of t leading up to and including t^2 must be included as well. The trial solution is thus $y_p(t) = A + Bt + Ct^2 + D\cos t + E\sin t$. Substitute this into the ODE to determine A, B, C, D, and E.

$$2(A + Bt + Ct^{2} + D\cos t + E\sin t)'' + 3(A + Bt + Ct^{2} + D\cos t + E\sin t)' + (A + Bt + Ct^{2} + D\cos t + E\sin t) = t^{2} + 3\sin t$$

$$2(B + 2Ct - D\sin t + E\cos t)' + 3(B + 2Ct - D\sin t + E\cos t) + (A + Bt + Ct^{2} + D\cos t + E\sin t) = t^{2} + 3\sin t$$

$$2(2C - D\cos t - E\sin t) + 3(B + 2Ct - D\sin t + E\cos t) + (A + Bt + Ct^{2} + D\cos t + E\sin t) = t^{2} + 3\sin t$$

$$4C - 2D\cos t - 2E\sin t + 3B + 6Ct - 3D\sin t + 3E\cos t + A + Bt + Ct^{2} + D\cos t + E\sin t = t^{2} + 3\sin t$$

 $(4C+3B+A)+(6C+B)t+(C)t^2+(-2D+3E+D)\cos t+(-2E-3D+E)\sin t=t^2+3\sin t$ For this equation to be true, A, B, C, D, and E must satisfy the following system of equations.

$$4C + 3B + A = 0$$
$$6C + B = 0$$
$$C = 1$$
$$-2D + 3E + D = 0$$
$$-2E - 3D + E = 3$$

Solving it yields A = 14, B = -6, C = 1, D = -9/10, and E = -3/10, which means

$$y_p(t) = 14 - 6t + t^2 - \frac{9}{10}\cos t - \frac{3}{10}\sin t.$$

Therefore,

$$y(t) = C_1 e^{-t} + C_2 e^{-t/2} + 14 - 6t + t^2 - \frac{9}{10} \cos t - \frac{3}{10} \sin t.$$