Problem 22

Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.

Solution

In Problem 10 the system described by mx'' + cx' + kx = W with the initial conditions, x(0) = 0.25 and x'(0) = 0.25, was considered, and the result found was (in feet)

$$x(t) = \frac{0.25}{\mu} e^{-ct/2m} \sin \mu t + \frac{W}{k}$$
$$= \frac{m}{2\sqrt{4mk - c^2}} e^{-ct/2m} \sin \frac{\sqrt{4mk - c^2}}{2m} t + \frac{W}{k},$$

where

$$k = 64 \frac{\text{lb}}{\text{ft}}$$

$$c = 2 \frac{\text{lb} \cdot \text{s}}{\text{ft}}$$

$$W = 16 \text{ lb}$$

$$m = \frac{W}{g} = \frac{16 \text{ lb}}{32.2 \frac{\text{ft}}{c^2}} \approx 0.5.$$

The logarithmic decrement is

$$\Delta = \frac{\pi c}{m\mu}$$

$$= \frac{\pi c}{m\frac{\sqrt{4mk - c^2}}{2m}}$$

$$= \frac{2\pi c}{\sqrt{4mk - c^2}}$$

$$\approx 1.13.$$