Problem 7

- (a) Find the solution of Problem 5.
- (b) Plot the graph of the solution.
- (c) If the given external force is replaced by a force $4\sin \omega t$ of frequency ω , find the value of ω for which resonance occurs.

Solution

The initial value problem in Problem 5 was

$$mx'' + kx = W + 2\cos 3t$$
, $x(0) = \frac{7}{24}$, $x'(0) = 0$,

where

$$m = \frac{4 \text{ lb}}{32.2 \frac{\text{ft}}{\text{s}^2}}$$
$$k = 32 \frac{\text{lb}}{\text{ft}}$$
$$W = 4 \text{ lb},$$

and its solution was found to be

$$x(t) = \left(\frac{7}{24} - \frac{W}{k} - \frac{2}{k - 9m}\right) \cos\sqrt{\frac{k}{m}}t + \frac{W}{k} + \frac{2}{k - 9m}\cos 3t.$$

As x(t) is in feet, multiply the result by 12 to convert it to inches.

Suppose now that the external force is $4 \sin \omega t$ rather than $2 \cos 3t$. Resonance occurs when ω matches the natural frequency of the system, that is,

$$\omega = \sqrt{\frac{k}{m}} \approx 16.05 \frac{\text{rad}}{\text{s}}.$$