Problem 19

Consider the nonhomogeneous nth order linear differential equation

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = g(t),$$
 (i)

where a_0, \ldots, a_n are constants. Verify that if g(t) is of the form

$$e^{\alpha t}(b_0 t^m + \dots + b_m),$$

then the substitution $y = e^{\alpha t}u(t)$ reduces Eq. (i) to the form

$$k_0 u^{(n)} + k_1 u^{(n-1)} + \dots + k_n u = b_0 t^m + \dots + b_m,$$
 (ii)

where k_0, \ldots, k_n are constants. Determine k_0 and k_n in terms of the a's and α . Thus the problem of determining a particular solution of the original equation is reduced to the simpler problem of determining a particular solution of an equation with constant coefficients and a polynomial for the nonhomogeneous term.

Solution

Let
$$g(t) = e^{\alpha t}(b_0 t^m + \dots + b_m)$$
. Then Eq. (i) becomes

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = e^{\alpha t} (b_0 t^m + \dots + b_m).$$

Make the substitution $y = e^{\alpha t}u(t)$.

$$a_0[e^{\alpha t}u(t)]^{(n)} + a_1[e^{\alpha t}u(t)]^{(n-1)} + \dots + a_n[e^{\alpha t}u(t)] = e^{\alpha t}(b_0t^m + \dots + b_m)$$
(1)

Start taking derivatives of $e^{\alpha t}u(t)$ to observe a pattern.

$$[e^{\alpha t}u(t)]' = e^{\alpha t}(\alpha u + u')$$

$$[e^{\alpha t}u(t)]'' = e^{\alpha t}(\alpha^2 u + 2\alpha u' + u'')$$

$$[e^{\alpha t}u(t)]''' = e^{\alpha t}(\alpha^3 u + 3\alpha^2 u' + 3\alpha u'' + u''')$$

$$[e^{\alpha t}u(t)]^{(4)} = e^{\alpha t}[\alpha^4 u + 4\alpha^3 u' + 6\alpha^2 u'' + 4\alpha u''' + u^{(4)}]$$

$$\vdots$$

$$[e^{\alpha t}u(t)]^{(n)} = e^{\alpha t}[\alpha^n u + \dots + u^{(n)}]$$

As a result, substituting these expressions into equation (1),

$$a_0 e^{\alpha t} [\alpha^n u + \dots + u^{(n)}] + a_1 e^{\alpha t} [\alpha^{n-1} u + \dots + u^{(n-1)}] + \dots + a_n [e^{\alpha t} u(t)] = e^{\alpha t} (b_0 t^m + \dots + b_m)$$

$$a_0 e^{\alpha t} u^{(n)} + \dots + e^{\alpha t} (a_0 \alpha^n u + a_1 \alpha^{n-1} u + \dots + a_{n-1} \alpha u + a_n u) = e^{\alpha t} (b_0 t^m + \dots + b_m).$$

Divide both sides by $e^{\alpha t}$ and factor u.

$$a_0u^{(n)} + \dots + (a_0\alpha^n + a_1\alpha^{n-1} + \dots + a_{n-1}\alpha + a_n)u = e^{\alpha t}(b_0t^m + \dots + b_m)$$

Therefore, comparing the coefficients,

$$k_0 = a_0$$

 $k_n = a_0 \alpha^n + a_1 \alpha^{n-1} + \dots + a_{n-1} \alpha + a_n.$