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Problem 21

The Hermite Equation. The equation

y′′ − 2xy′ + λy = 0, −∞ < x <∞,

where λ is a constant, is known as the Hermite5 equation. It is an important equation in
mathematical physics.

(a) Find the first four terms in each of two solutions about x = 0 and show that they form a
fundamental set of solutions.

(b) Observe that if λ is a nonnegative even integer, then one or the other of the series solutions
terminates and becomes a polynomial. Find the polynomial solutions for λ = 0, 2, 4, 6, 8,
and 10. Note that each polynomial is determined only up to a multiplicative constant.

(c) The Hermite polynomial Hn(x) is defined as the polynomial solution of the Hermite
equation with λ = 2n for which the coefficient of xn is 2n. Find H0(x), . . . , H5(x).

Solution

Part (a)

x = 0 is not a zero of the coefficient of y′′, so x = 0 is an ordinary point. As such, the solution for
y can be represented as a power series centered at x = 0.

y(x) =

∞∑
n=0

anx
n

Differentiate this series twice with respect to x to get y′ and y′′.

y =

∞∑
n=0

anx
n → y′ =

∞∑
n=1

nanx
n−1 → y′′ =

∞∑
n=2

n(n− 1)anx
n−2

Substitute these series into the ODE.

∞∑
n=2

n(n− 1)anx
n−2 − 2x

∞∑
n=1

nanx
n−1 + λ

∞∑
n=0

anx
n = 0

Bring 2x and λ inside the respective summands.

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

2nanx
n +

∞∑
n=0

λanx
n = 0

Because of the factor n, the second sum can be set to start from n = 0.

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

2nanx
n +

∞∑
n=0

λanx
n = 0

5Charles Hermite (1822–1901) was an influential French analyst and algebraist. An inspiring teacher, he was
professor at the École Polytechnique and the Sorbonne. He introduced the Hermite functions in 1864 and showed in
1873 that e is a transcendental number (that is, e is not a root of any polynomial equation with rational coefficients).
His name is also associated with Hermitian matrices (see Section 7.3), some of whose properties he discovered.
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Substitute k = n− 2 in the first sum and k = n in the others.

∞∑
k+2=2

(k + 2)(k + 1)ak+2x
k −

∞∑
k=0

2kakx
k +

∞∑
k=0

λakx
k = 0

Solve for k.
∞∑
k=0

(k + 2)(k + 1)ak+2x
k −

∞∑
k=0

2kakx
k +

∞∑
k=0

λakx
k = 0

Now that each of the sums has the same limits and factors of x, they can be combined.

∞∑
k=0

[(k + 2)(k + 1)ak+2x
k − 2kakx

k + λakx
k] = 0

Factor the summand.
∞∑
k=0

[(k + 2)(k + 1)ak+2 − 2kak + λak]x
k = 0

∞∑
k=0

[(k + 2)(k + 1)ak+2 + (λ− 2k)ak]x
k = 0

The coefficients must be zero.

(k + 2)(k + 1)ak+2 + (λ− 2k)ak = 0

Solve for ak+2.

ak+2 =
2k − λ

(k + 2)(k + 1)
ak

Plug in enough values of k to get four terms involving a0 and four terms involving a1.

k = 0 : a2 =
0− λ
(2)(1)

a0 =
0− λ
2 · 1

a0 k = 1 : a3 =
2− λ
(3)(2)

a1 =
2− λ
3 · 2

a1

k = 2 : a4 =
4− λ
(4)(3)

a2 =
(4− λ)(0− λ)
4 · 3 · 2 · 1

a0 k = 3 : a5 =
6− λ
(5)(4)

a3 =
(6− λ)(2− λ)

5 · 4 · 3 · 2
a1

k = 4 : a6 =
8− λ
(6)(5)

a4 =
(8− λ)(4− λ)(0− λ)

6 · 5 · 4 · 3 · 2 · 1
a0 k = 5 : a7 =

10− λ
(7)(6)

a5 =
(10− λ)(6− λ)(2− λ)

7 · 6 · 5 · 4 · 3 · 2
a1

...
...

Therefore, the general solution to the Hermite equation is

y(x) =
∞∑
n=0

anx
n

= a0 + a1x+
0− λ
2 · 1

a0x
2 +

2− λ
3 · 2

a1x
3 +

(4− λ)(0− λ)
4 · 3 · 2 · 1

a0x
4 +

(6− λ)(2− λ)
5 · 4 · 3 · 2

a1x
5

+
(8− λ)(4− λ)(0− λ)

6 · 5 · 4 · 3 · 2 · 1
a0x

6 +
(10− λ)(6− λ)(2− λ)

7 · 6 · 5 · 4 · 3 · 2
a1x

7 + · · ·

= a0

[
1 +

0− λ
2 · 1

x2 +
(4− λ)(0− λ)

4 · 3 · 2 · 1
x4 +

(8− λ)(4− λ)(0− λ)
6 · 5 · 4 · 3 · 2 · 1

x6 + · · ·
]

+ a1

[
x+

2− λ
3 · 2

x3 +
(6− λ)(2− λ)

5 · 4 · 3 · 2
x5 +

(10− λ)(6− λ)(2− λ)
7 · 6 · 5 · 4 · 3 · 2

x7 + · · ·
]
.
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Denote these two series solutions as y1(x) and y2(x), respectively.

y(x) = a0y1(x) + a1y2(x)

Calculate the Wronskian of y1 and y2.

W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣
= y1y

′
2 − y′1y2

=

[
1 +

0− λ
2 · 1

x2 +
(4− λ)(0− λ)

4 · 3 · 2 · 1
x4 +

(8− λ)(4− λ)(0− λ)
6 · 5 · 4 · 3 · 2 · 1

x6 + · · ·
]

×
[
1 +

2− λ
2

x2 +
(6− λ)(2− λ)

4 · 3 · 2
x4 +

(10− λ)(6− λ)(2− λ)
6 · 5 · 4 · 3 · 2

x+ · · ·
]

−
[
0− λ
1

x+
(4− λ)(0− λ)

3 · 2 · 1
x3 +

(8− λ)(4− λ)(0− λ)
5 · 4 · 3 · 2 · 1

x5 + · · ·
]

×
[
x+

2− λ
3 · 2

x3 +
(6− λ)(2− λ)
5 · 4 · 3 · 2

x5 +
(10− λ)(6− λ)(2− λ)

7 · 6 · 5 · 4 · 3 · 2
x7 + · · ·

]
At x = 0 the Wronskian is nonzero,

W (y1, y2)(0) = (1)(1)− (0)(0) = 1,

which means y1 and y2 form a fundamental set of solutions for the ODE.

Part (b)

If λ = 0, then the first series solution terminates.

y1(x) = 1

If λ = 2, then the second series solution terminates.

y2(x) = x

If λ = 4, then the first series solution terminates.

y1(x) = 1− 2x2

If λ = 6, then the second series solution terminates.

y2(x) = x− 2

3
x3

If λ = 8, then the first series solution terminates.

y1(x) = 1− 4x2 +
4

3
x4

If λ = 10, then the second series solution terminates.

y2(x) = x− 4

3
x3 +

4

15
x5
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Part (c)

The first five Hermite polynomials are obtained from these previous polynomial solutions. Write
them so that the coefficients of xn are 2n, where λ = 2n.

n = 0 : y1 = 1 = 20x0 → H0(x) = 1

n = 1 : y2 = x =
1

2
(21x1) → H1(x) = 2x

n = 2 : y1 = 1− 2x2 = −1

2
(22x2 − 2) → H2(x) = 4x2 − 2

n = 3 : y2 = x− 2

3
x3 = − 1

12
(23x3 − 12x) → H3(x) = 8x3 − 12x

n = 4 : y1 = 1− 4x2 +
4

3
x4 =

1

12
(12− 48x2 + 24x4) → H4(x) = 16x4 − 48x2 + 12

n = 5 : y2 = x− 4

3
x3 +

4

15
x5 =

1

120
(120x− 160x3 + 25x5) → H5(x) = 32x5 − 160x3 + 120x
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