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Problem 15

In each of Problems 11 through 23, use the Laplace transform to solve the given initial value
problem.

y' =2y +4y=0; y(0)=2, ¢ (0)=0

Solution

Because the ODE is linear, the Laplace transform can be applied to solve it. The Laplace
transform of a function y(t) is defined here as

V() = £lote) = [ e yte)

Consequently, the first and second derivatives transform as follows.
c{ =40
{5 =¥ - (0 -0
Apply the Laplace transform to both sides of the ODE.
L{y" — 2y + 4y} = £{0}
Use the fact that the transform is a linear operator.
L{y"} = 2L{y'} +4L{y} =0
[s*Y (s) — sy(0) = 5/ (0)] = 2[sY (s) — y(0)] +4Y (s) = 0
Plug in the initial conditions, y(0) = 2 and y'(0) = 0.
[s2Y (s) — 2] — 2[sY (s) — 2] +4Y(s) = 0

As a result of applying the Laplace transform, the ODE has reduced to an algebraic equation for
Y, the transformed solution.

s%Y (s) — 25V (s) +4Y (s) —2s +4 =0
(2 =25 +4)Y(s) =25 — 4
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Take the inverse Laplace transform of Y'(s) now to recover y(t).

y(t) = L7HY ()}
V3
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