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Problem 2.48

Consider a particle of mass m in the potential

V (x) =


∞ x < 0,

−32~2/ma2 0 ≤ x ≤ a,
0 x > a.

(a) How many bound states are there?

(b) In the highest-energy bound state, what is the probability that the particle would be found
outside the well (x > a)? Answer: 0.542, so even though it is “bound” by the well, it is
more likely to be found outside than inside!

Solution

The governing equation for the wave function Ψ(x, t) is the Schrödinger equation.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x, t)Ψ(x, t), −∞ < x <∞, t > 0

Split it up over the intervals where the given potential is finite and infinite.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ (∞)Ψ(x, t), x < 0, t > 0; i~

∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ(x, t), x > 0, t > 0

The only solution for the PDE over x < 0 is Ψ(x, t) = 0. Because the wave function is continuous,
Ψ(0, t) = 0 becomes a boundary condition for the remaining PDE on x > 0.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ(x, t), x > 0, t > 0

Ψ(0, t) = 0

Ψ(∞, t) = 0

Since information about the eigenstates and their corresponding energies is desired, the method of
separation of variables is opted for. This method works because Schrödinger’s equation and its
associated boundary conditions are linear and homogeneous. Assume a product solution of the
form Ψ(x, t) = ψ(x)φ(t) and plug it into the PDE

i~
∂

∂t
[ψ(x)φ(t)] = − ~2

2m

∂2

∂x2
[ψ(x)φ(t)] + V (x)[ψ(x)φ(t)]

i~ψ(x)φ′(t) = − ~2

2m
ψ′′(x)φ(t) + V (x)ψ(x)φ(t)

and the boundary conditions.

Ψ(0, t) = 0 → ψ(0)φ(t) = 0 → ψ(0) = 0

Ψ(∞, t) = 0 → ψ(∞)φ(t) = 0 → ψ(∞) = 0

Divide both sides of the PDE by ψ(x)φ(t) in order to separate variables.

i~
φ′(t)

φ(t)
= − ~2

2m

ψ′′(x)

ψ(x)
+ V (x)
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The only way a function of t can be equal to a function of x is if both are equal to a constant E.

i~
φ′(t)

φ(t)
= − ~2

2m

ψ′′(x)

ψ(x)
V (x) = E

As a result of using the method of separation of variables, the Schrödinger equation has reduced
to two ODEs, one in x and one in t.

i~
φ′(t)

φ(t)
= E

− ~2

2m

ψ′′(x)

ψ(x)
+ V (x) = E


Values of E for which the boundary conditions are satisfied are called the eigenvalues (or
eigenenergies in this context), and the nontrivial solutions associated with them are called the
eigenfunctions (or eigenstates in this context). The ODE in x is known as the time-independent
Schrödinger equation (TISE) and can be written as

d2ψ

dx2
=

2m

~2
[V (x)− E]ψ, x > 0.

Split it up over the intervals that V (x) is defined on.

d2ψ

dx2
= −2m

~2

(
32~2

ma2
+ E

)
ψ, 0 ≤ x ≤ a;

d2ψ

dx2
=

2m

~2
(−E)ψ, x > a

Bound states have energy −32~2/(ma2) < E < 0, or 32~2/(ma2) + E > 0, as illustrated below.

The general solution for ψ can be written as

ψ(x) =

{
C1 cos `x+ C2 sin `x if 0 ≤ x ≤ a
C3e

−κx + C4e
κx if x > a

,

where

κ =

√
−2mE

~
and ` =

√
2m

~2

(
32~2
ma2

+ E

)
.
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Apply the boundary condition at x = 0 to determine one constant.

ψ(0) = C1 = 0.

To satisfy the boundary condition at x =∞, set C4 = 0.

ψ(x) =

{
C2 sin `x if 0 ≤ x ≤ a
C3e

−κx if x > a

Use the fact that the wave function [and consequently ψ(x)] must be continuous at x = a to
determine another constant.

lim
x→a−

ψ(x) = lim
x→a+

ψ(x) : C2 sin `a = C3e
−κa (1)

Finally, integrate both sides of the TISE with respect to x from a− ε to a+ ε, where ε is a really
small positive number.

ˆ a+ε

a−ε

d2ψ

dx2
dx =

ˆ a+ε

a−ε

2m

~2
[V (x)− E]ψ(x) dx

dψ

dx

∣∣∣∣a+ε
a−ε

=

ˆ a

a−ε

2m

~2

(
−32~2

ma2
− E

)
ψ(x) dx+

ˆ a+ε

a

2m

~2
(−E)ψ(x) dx

=
2m

~2

(
−32~2

ma2
− E

)
ψ(a)

ˆ a

a−ε
dx+

2m

~2
(−E)ψ(a)

ˆ a+ε

a
dx

=
2m

~2

(
−32~2

ma2
− E

)
ψ(a)ε+

2m

~2
(−E)ψ(a)ε

Take the limit as ε→ 0.
dψ

dx

∣∣∣∣a+
a−

= 0

It turns out that ∂Ψ/∂x is also continuous at x = a.

lim
x→a−

dψ

dx
= lim

x→a+
dψ

dx
: C2` cos `a = −C3κe

−κa (2)

Substitute equation (1) into equation (2).

C2` cos `a = −C2κ sin `a

To avoid the trivial solution, assume that C2 6= 0.

` cos `a = −κ sin `a

Multiply both sides by a.
`a cot `a = −κa (3)

Note that

κ2 + `2 =
−2mE

~2
+

2m

~2

(
32~2

ma2
+ E

)
= −2mE

~2
+

64

a2
+

2mE

~2
=

64

a2
.
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Multiply both sides by a2 and then solve for κa.

κ2a2 + `2a2 = 64

κ2a2 = 64− `2a2

κa =
√

64− `2a2

As a result, equation (3) becomes

`a cot `a = −
√

64− `2a2

− cot `a =

√
64

`2a2
− 1.

Plot the functions on both sides versus `a.

Since there are three intersections, there are three bound states. These intersections occur at
approximately

`a ≈ 2.78590 →

√
2m

~2

(
32~2
ma2

+ E1

)
a ≈ 2.78590 → E1 ≈ −

28.1194~2

ma2

`a ≈ 5.52145 →

√
2m

~2

(
32~2
ma2

+ E2

)
a ≈ 5.52145 → E2 ≈ −

16.7568~2

ma2

`a ≈ 7.95732 →

√
2m

~2

(
32~2
ma2

+ E3

)
a ≈ 7.95732 → E3 ≈ −

0.340529~2

ma2
.

For the highest energy,

κ =

√
−2mE3

~
≈ 0.825263

a
and ` ≈ 7.95732

a
.
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The eigenfunction associated with the highest energy is

ψ(x) =

{
C2 sin `x if 0 ≤ x ≤ a
C3e

−κx if x > a

=

{
C2 sin `x if 0 ≤ x ≤ a
(C2e

κa sin `a)e−κx if x > a

=

{
C2 sin `x if 0 ≤ x ≤ a
(C2 sin `a)e−κ(x−a) if x > a

≈

C2 sin 7.95732x
a if 0 ≤ x ≤ a

(C2 sin 7.95732) exp
[
−0.825263

(
x
a − 1

)]
if x > a

.

C2 is arbitrary and is chosen so that the integral of [ψ(x)]2 over the half-line is 1.

1 =

ˆ ∞
0

[ψ(x)]2 dx

=

ˆ a

0

(
C2 sin

7.95732x

a

)2

dx+

ˆ ∞
a

{
(C2 sin 7.95732) exp

[
−0.825263

(x
a
− 1
)]}2

dx

= 1.10587aC2
2

Solve for C2.

C2 =
0.950930√

a

Therefore, the eigenstate with the highest energy is

ψ(x) =


0.950930√

a
sin 7.95732x

a if 0 ≤ x ≤ a
0.945857√

a
exp

[
−0.825263

(
x
a − 1

)]
if x > a

.

The probability that the particle is outside the well is 1 minus the probability that it’s inside the
well.

1−
ˆ a

0
[ψ(x)]2 dx = 1−

ˆ a

0

(
0.950930√

a
sin

7.95732x

a

)2

dx

≈ 0.542
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