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Exercise 2.3.2

Consider the differential equation
d%¢
dz?
Determine the eigenvalues A (and corresponding eigenfunctions) if ¢ satisfies the following
boundary conditions. Analyze three cases (A > 0, A =0, A < 0). You may assume that the
eigenvalues are real.

(a) ¢(0) =0 and ¢(7) =
(b) ¢(0) =0 and ¢(1) =

+Ap=0.

(c) d¢( 0) =0 and ﬁ( ) = 0 (If necessary, see Section 2.4.1.)

dz
(d) #(0) =0 and %(L) =0
d
(e) S20)=0and 6(1) =
(f) ¢(a) =0 and ¢(b) = 0 (You may assume that A > 0.)
(g) ¢(0) =0 and Z¢( )+ ¢(L) = 0 (If necessary, see Section 5.8.)
Solution
Part (a)
d2
TO4M6=0,  6(0)=0, 6(r) =0
Suppose first that ) is positive: A\ = p2.
d2
iz (g + 126 =0

The general solution is written in terms of sine and cosine.
¢(x) = Cy cos px + Cy sin px

Apply the boundary conditions now to determine Cy and Co.

The second equation reduces to Cs sin um = 0. In order to avoid the trivial solution, we insist that
Cy # 0. Then

sin ymr =0
pur=nmw, n=12 ...

Pn=mn, n=12....
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Therefore, there are positive eigenvalues A\, = n?, and the eigenfunctions associated with them are

¢(z) = Cy cos px + Cy sin px
=Cysinpzr  —  ¢p(z) = sinne.
Suppose secondly that A is zero: A = 0.
d%¢
270
dz?
The general solution is obtained by integrating both sides with respect to = twice.
do
0
dx 3
(b(x) = Cgl’ + 04
Apply the boundary conditions now to determine C3 and Cjy.
?(0)=Cy=0
p(m) =C3m+Cy =0

Since Cy = 0, the second equation gives C3 = 0. The trivial solution is obtained, which means

that zero is not an eigenvalue. Suppose thirdly that ) is negative: A = —v2.
¢
—_— — =0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
¢(x) = C5 coshyzx + Cg sinh vz
Apply the boundary conditions now to determine C5 and Cg.

»(0)=C5=0
¢(m) = C5 coshym 4+ Cgsinhymr =0

The second equation reduces to Cg sinhym = 0. Because hyperbolic sine is not oscillatory, Cg must
be zero. This results in the trivial solution, which means that there are no negative eigenvalues.
Part (b)

d%¢

Suppose first that A is positive: A = 2.

o
dzz THO=0

The general solution is written in terms of sine and cosine.

¢(x) = Cy cos px + Co sin px
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Apply the boundary conditions now to determine C7 and Cs.

$(0)=C1=0
$(1) =Cicosp+ Cosinp =0

The second equation reduces to Cysin pt = 0. In order to avoid the trivial solution, we insist that
Cy # 0. Then

sinpg =0
P =nm, n=12....

2

Therefore, there are positive eigenvalues \,, = n?7?, and the eigenfunctions associated with them

are
¢(x) = Cq cos px + Co sin px
=Cysinpr  —  ¢p(z) = sinnmz.
Suppose secondly that A is zero: A = 0.
d*¢
270
da?

The general solution is obtained by integrating both sides with respect to = twice.

dqb_
ar

d(x) = Csx + Cy
Apply the boundary conditions now to determine C'3 and Cjy.

¢(0) =Cy=0
p(1)=C35+Cy=0

Since Cy = 0, the second equation gives C3 = 0. The trivial solution is obtained, which means

that zero is not an eigenvalue. Suppose thirdly that \ is negative: A = —v2.
¢
-7 =0
dx? ¢

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
¢(x) = C5 coshyx + Cg sinh yx
Apply the boundary conditions now to determine C5 and C.

9(0)=C5=0
#(1) = Cs coshy + Cgsinhy =0

The second equation reduces to Csinh~y = 0. Because hyperbolic sine is not oscillatory, Cg must
be zero. This results in the trivial solution, which means that there are no negative eigenvalues.
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Part (c)

d2d> do
_— )\ = _ =

Suppose first that A is positive: A = p2.

d¢

7 L) =

2
% +u2p=0
The general solution is written in terms of sine and cosine.
¢(z) = Cy cos px + Cy sin px
Take a derivative of it with respect to x.
¢ (z) = p(—Cy sin pz + Cy cos px)
Apply the boundary conditions now to determine C; and Co.

¢ 0)=pu(Cy)=0 — Co=0
¢' (L) = p(—Cy sin uL + Cycos uL) = 0

The second equation reduces to —Cpsin L = 0. In order to avoid the trivial solution, we insist
that C1 # 0. Then

—psinpl =0
sinpul =0
uL=nm, n=12,...
nmw
anf7 n=12....

Therefore, there are positive eigenvalues )\, = n?72/L?, and the eigenfunctions associated with
them are

¢(x) = Cq cos px + Co sin px

=Cicosuxr —  ¢p(x) = cos sz
Suppose secondly that A is zero: A = 0.
d2
o _
dx?
The general solution is obtained by integrating both sides with respect to = twice.
do
Y0
dz 3
C3 is set to zero to satisfy the boundary conditions. Integrate once more.
¢(zx) = Cy

Zero is an eigenvalue because ¢ is nonzero; the eigenfunction associated with it is ¢o(z) = 1.
Suppose thirdly that X is negative: A = —~2.
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The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
¢(x) = C5 coshyzx + Cg sinh vz
Take a derivative of it with respect to x.
¢ (z) = v(Cj5 sinhyx + Cg cosh yx)
Apply the boundary conditions now to determine C5 and Cj.

¢'(0)=7(Cs) =0 — Cs=0
¢'(L) = v(Cs sinhyL + Cg coshyL) = 0
The second equation reduces to C5vysinhyL = 0. Because hyperbolic sine is not oscillatory, Cs

must be zero. This results in the trivial solution, which means that there are no negative
eigenvalues.

Part (d)
d*¢

Suppose first that A is positive: A = 2.

d¢

(L) =0

32;2 +ulp=0
The general solution is written in terms of sine and cosine.
¢(z) = Cy cos px + Cy sin px
Take a derivative of it with respect to x.
¢ (z) = p(—Cy sin px + Cy cos pux)
Apply the boundary conditions now to determine C7 and Cs.

$(0)=C1=0
¢' (L) = p(—Cy sin uL + Cycos uL) = 0

The second equation reduces to Cop cos uL = 0. In order to avoid the trivial solution, we insist
that Cy # 0. Then

pecosul =0
cosul =0
1
,uL:§(2n—1)7r, n=12...
1
un:ﬁ@n—l)ﬂ', n=12....

Therefore, there are positive eigenvalues A, = (2n — 1)?72/(4L?), and the eigenfunctions
associated with them are

¢(x) = Cy cos px + Cy sin px

1
=Cysinpr  —  ¢p(z) =sin E(2n — ).
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Suppose secondly that A is zero: A = 0.
2o,
de?

The general solution is obtained by integrating both sides with respect to = twice.

dqb_
prials

(3 is set to zero to satisfy ¢/(L) = 0. Integrate once more.

Cy is set to zero to satisfy ¢(0) = 0. This results in the trivial solution, which means that zero is

not an eigenvalue. Suppose thirdly that X is negative: A = —~2.

d2¢

a2 ¢ =0
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
¢(x) = Cs coshyx + Cg sinh yx
Take a derivative of it with respect to x.
¢'(x) = ~(Cs sinh yx + Cg cosh )
Apply the boundary conditions now to determine C5 and Cy.

p(0)=C5=0
¢'(L) = v(Cs sinhyL + Cg coshyL) = 0

The second equation reduces to Cg7y coshyL = 0. Because hyperbolic cosine is not oscillatory, Cg
must be zero. This results in the trivial solution, which means that there are no negative
eigenvalues.

Part (e)

d*¢ B do . B
tae=0. L) =0 6(1) =0

Suppose first that A is positive: A\ = p2.
¢
-7 =0
The general solution is written in terms of sine and cosine.
¢(z) = Cy cos pz + Cy sin px

Take a derivative of it with respect to x.

¢ (x) = u(—=Cy sin px + C cos px)
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Apply the boundary conditions now to determine C7 and Cs.

¢'(0) =p(C2) =0 — C2=0
¢(L) = CicospuL + Cysin uL =0

The second equation reduces to C cos uL = 0. In order to avoid the trivial solution, we insist
that C1 # 0. Then

cospl =0
1
,uin(Qn—l)Tr, n=12...
1
,un:i(Zn—l)W, n=12....

Therefore, there are positive eigenvalues \,, = (2n — 1)272/(4L?), and the eigenfunctions
associated with them are

¢(x) = Cy cos px + Cosin px

1
=Cicosur —  ¢p(x) =cos —(2n — 1)mx.

2L
Suppose secondly that A is zero: A = 0.
d*¢
25
dx?
The general solution is obtained by integrating both sides with respect to = twice.
d¢
Y0
dz 3

(3 is set to zero to satisfy ¢'(0) = 0. Integrate once more.
¢(x) = Cy

C} is set to zero to satisfy ¢(L) = 0. This results in the trivial solution, which means that zero is

not an eigenvalue. Suppose thirdly that X is negative: A = —~2.

d2

7? _ 2¢ =0

dx
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

¢(x) = C5 coshyzx + Cg sinh vz
Take a derivative of it with respect to x.
¢'(z) = v(Cj5 sinh yx + Cg cosh yx)

Apply the boundary conditions now to determine C5 and C.

¢'(0)=7(Ce) =0 — Ce=0
¢(L) = CscoshyL + CgsinhyL =0
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The second equation reduces to C5 coshyL = 0. Because hyperbolic cosine is not oscillatory, Cs

must be zero. This results in the trivial solution, which means that there are no negative
eigenvalues.

Part (f)

d%¢
CoHN=0,  6(a)=0, 6(b) =0
Suppose only that X is positive: A\ = 2.

d%¢

e

The general solution is written in terms of sine and cosine.
¢(z) = Cy cos pz + Cy sin px
Apply the boundary conditions now to determine C; and Cs.

¢(a) = C} cos pa + Cysin pa = 0
¢(b) = Cy cos ub+ Casinub =0

Solve equation (1) for Cj.

sin pa

Cicospua = —Cysinpua — Cp=-0C9
COS [1a

Substitute this result for C into equation (2).

(—Cg e ,ua) cos ub + Cysinub = 0
COS [1a

Assume that Cy # 0 and divide both sides by C5 cos ub.

si sin pb
(_ 1n,ua>+blnu _o
CoS [a cos ub

—tan pa 4 tan pub = 0
tan pub = tan ua

wb = pa + nmw
pu(b—a) =nm

U = mr’ n=12...
b—a

Note that n has the values it does because A can’t be zero, and negative values of n yield
redundant values of A. Therefore, there are positive eigenvalues A = n?r2/(b — a)?, and the
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eigenfunctions associated with them are
¢(x) = Cy cos px + Co sin px

= (—Cg i ,ua) cos ux + Co sin px
Ccos a

= 2 (— sin pa cos px + sin px cos pa)

COS f1a
Cy .
= sin p(z — a)
COS [1a
=Cssinp(z —a) —  ¢p(x) =sin mrlfw_—aa)
Part (g)
d%¢ do
— + X =0 0)=0, —(L L)y=0
TCix=0,  6(0)=0, (1) + (1)
Suppose first that A is positive: A\ = p2.
¢
£ =0

The general solution is written in terms of sine and cosine.
¢(x) = Cy cos px + Co sin px
Take a derivative of it with respect to x.
¢ (z) = p(—Cy sin px + Cy cos px)
Apply the boundary conditions now to determine C7 and Cs.
¢(0)=C1=0
&' (L) + ¢(L) = u(—=CysinuL + Cycos pL) + Cy cos uL + Cosin uL = 0
The second equation reduces to Cop cos uL + Cysin uL = 0. In order to avoid the trivial solution,

we insist that Cy # 0. Then
peospul +sinpul =0

sinul = —pcospulL
tan L = —pp, n=12,....
Therefore, there are positive eigenvalues A, = 2, and the eigenfunctions associated with them are

¢(x) = Cy cos px + Co sin px
=Cosinpr  —  ¢p(z) = sin p,x.

Suppose secondly that A is zero: A = 0.
2o,
dz?

The general solution is obtained by integrating both sides with respect to = twice.

@ _

dx Cs
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gf)(l‘) =C32x+ Cy
Apply the boundary conditions now to determine C'3 and Cjy.
»(0)=Cy=0
¢'(L) + ¢(L) = C3+ C3L +Cy =0
Since Cy = 0, the second equation reduces to C3(1 + L) = 0, so C3 must be zero as well. This

results in the trivial solution, which means that zero is not an eigenvalue. Suppose thirdly that A

is negative: A = —2.

32;3 ~7’6=0
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
¢(x) = C5 coshyx + Cg sinh yx
Take a derivative of it with respect to x.
¢'(x) = ~(Cs sinh yx + Cg cosh )
Apply the boundary conditions now to determine C5 and Cy.

$(0) =C5 =0
¢ (L) + ¢(L) = ~(CssinhyL + Cg coshyL) + Cs coshyL + CgsinhyL = 0

The second equation reduces to Cg7y coshyL + Cgsinh~vL = 0. To avoid getting the trivial
solution, we insist that Cg # 0. Then

vy cosh~yL 4 sinh~yL = 0

sinhyL = —~cosh~vL
tanhyL = —v.

The graph of tanhyL does not intersect —v at any nonzero value of 7y, so there are no negative
eigenvalues.
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