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Exercise 2.3.2

Consider the differential equation
d2φ

dx2
+ λφ = 0.

Determine the eigenvalues λ (and corresponding eigenfunctions) if φ satisfies the following
boundary conditions. Analyze three cases (λ > 0, λ = 0, λ < 0). You may assume that the
eigenvalues are real.

(a) φ(0) = 0 and φ(π) = 0

(b) φ(0) = 0 and φ(1) = 0

(c)
dφ

dx
(0) = 0 and

dφ

dx
(L) = 0 (If necessary, see Section 2.4.1.)

(d) φ(0) = 0 and
dφ

dx
(L) = 0

(e)
dφ

dx
(0) = 0 and φ(L) = 0

(f) φ(a) = 0 and φ(b) = 0 (You may assume that λ > 0.)

(g) φ(0) = 0 and
dφ

dx
(L) + φ(L) = 0 (If necessary, see Section 5.8.)

Solution

Part (a)

d2φ

dx2
+ λφ = 0, φ(0) = 0, φ(π) = 0

Suppose first that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx

Apply the boundary conditions now to determine C1 and C2.

φ(0) = C1 = 0

φ(π) = C1 cosµπ + C2 sinµπ = 0

The second equation reduces to C2 sinµπ = 0. In order to avoid the trivial solution, we insist that
C2 6= 0. Then

sinµπ = 0

µπ = nπ, n = 1, 2, . . .

µn = n, n = 1, 2, . . . .
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Therefore, there are positive eigenvalues λn = n2, and the eigenfunctions associated with them are

φ(x) = C1 cosµx+ C2 sinµx

= C2 sinµx → φn(x) = sinnx.

Suppose secondly that λ is zero: λ = 0.
d2φ

dx2
= 0

The general solution is obtained by integrating both sides with respect to x twice.

dφ

dx
= C3

φ(x) = C3x+ C4

Apply the boundary conditions now to determine C3 and C4.

φ(0) = C4 = 0

φ(π) = C3π + C4 = 0

Since C4 = 0, the second equation gives C3 = 0. The trivial solution is obtained, which means
that zero is not an eigenvalue. Suppose thirdly that λ is negative: λ = −γ2.

d2φ

dx2
− γ2φ = 0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C5 cosh γx+ C6 sinh γx

Apply the boundary conditions now to determine C5 and C6.

φ(0) = C5 = 0

φ(π) = C5 cosh γπ + C6 sinh γπ = 0

The second equation reduces to C6 sinh γπ = 0. Because hyperbolic sine is not oscillatory, C6 must
be zero. This results in the trivial solution, which means that there are no negative eigenvalues.

Part (b)

d2φ

dx2
+ λφ = 0, φ(0) = 0, φ(1) = 0

Suppose first that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx
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Apply the boundary conditions now to determine C1 and C2.

φ(0) = C1 = 0

φ(1) = C1 cosµ+ C2 sinµ = 0

The second equation reduces to C2 sinµ = 0. In order to avoid the trivial solution, we insist that
C2 6= 0. Then

sinµ = 0

µn = nπ, n = 1, 2, . . . .

Therefore, there are positive eigenvalues λn = n2π2, and the eigenfunctions associated with them
are

φ(x) = C1 cosµx+ C2 sinµx

= C2 sinµx → φn(x) = sinnπx.

Suppose secondly that λ is zero: λ = 0.
d2φ

dx2
= 0

The general solution is obtained by integrating both sides with respect to x twice.

dφ

dx
= C3

φ(x) = C3x+ C4

Apply the boundary conditions now to determine C3 and C4.

φ(0) = C4 = 0

φ(1) = C3 + C4 = 0

Since C4 = 0, the second equation gives C3 = 0. The trivial solution is obtained, which means
that zero is not an eigenvalue. Suppose thirdly that λ is negative: λ = −γ2.

d2φ

dx2
− γ2φ = 0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C5 cosh γx+ C6 sinh γx

Apply the boundary conditions now to determine C5 and C6.

φ(0) = C5 = 0

φ(1) = C5 cosh γ + C6 sinh γ = 0

The second equation reduces to C6 sinh γ = 0. Because hyperbolic sine is not oscillatory, C6 must
be zero. This results in the trivial solution, which means that there are no negative eigenvalues.
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Part (c)

d2φ

dx2
+ λφ = 0,

dφ

dx
(0) = 0,

dφ

dx
(L) = 0

Suppose first that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx

Take a derivative of it with respect to x.

φ′(x) = µ(−C1 sinµx+ C2 cosµx)

Apply the boundary conditions now to determine C1 and C2.

φ′(0) = µ(C2) = 0 → C2 = 0

φ′(L) = µ(−C1 sinµL+ C2 cosµL) = 0

The second equation reduces to −C1µ sinµL = 0. In order to avoid the trivial solution, we insist
that C1 6= 0. Then

−µ sinµL = 0

sinµL = 0

µL = nπ, n = 1, 2, . . .

µn =
nπ

L
, n = 1, 2, . . . .

Therefore, there are positive eigenvalues λn = n2π2/L2, and the eigenfunctions associated with
them are

φ(x) = C1 cosµx+ C2 sinµx

= C1 cosµx → φn(x) = cos
nπx

L
.

Suppose secondly that λ is zero: λ = 0.
d2φ

dx2
= 0

The general solution is obtained by integrating both sides with respect to x twice.

dφ

dx
= C3

C3 is set to zero to satisfy the boundary conditions. Integrate once more.

φ(x) = C4

Zero is an eigenvalue because φ is nonzero; the eigenfunction associated with it is φ0(x) = 1.
Suppose thirdly that λ is negative: λ = −γ2.

d2φ

dx2
− γ2φ = 0
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The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C5 cosh γx+ C6 sinh γx

Take a derivative of it with respect to x.

φ′(x) = γ(C5 sinh γx+ C6 cosh γx)

Apply the boundary conditions now to determine C5 and C6.

φ′(0) = γ(C6) = 0 → C6 = 0

φ′(L) = γ(C5 sinh γL+ C6 cosh γL) = 0

The second equation reduces to C5γ sinh γL = 0. Because hyperbolic sine is not oscillatory, C5

must be zero. This results in the trivial solution, which means that there are no negative
eigenvalues.

Part (d)

d2φ

dx2
+ λφ = 0, φ(0) = 0,

dφ

dx
(L) = 0

Suppose first that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx

Take a derivative of it with respect to x.

φ′(x) = µ(−C1 sinµx+ C2 cosµx)

Apply the boundary conditions now to determine C1 and C2.

φ(0) = C1 = 0

φ′(L) = µ(−C1 sinµL+ C2 cosµL) = 0

The second equation reduces to C2µ cosµL = 0. In order to avoid the trivial solution, we insist
that C2 6= 0. Then

µ cosµL = 0

cosµL = 0

µL =
1

2
(2n− 1)π, n = 1, 2, . . .

µn =
1

2L
(2n− 1)π, n = 1, 2, . . . .

Therefore, there are positive eigenvalues λn = (2n− 1)2π2/(4L2), and the eigenfunctions
associated with them are

φ(x) = C1 cosµx+ C2 sinµx

= C2 sinµx → φn(x) = sin
1

2L
(2n− 1)πx.
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Suppose secondly that λ is zero: λ = 0.
d2φ

dx2
= 0

The general solution is obtained by integrating both sides with respect to x twice.

dφ

dx
= C3

C3 is set to zero to satisfy φ′(L) = 0. Integrate once more.

φ(x) = C4

C4 is set to zero to satisfy φ(0) = 0. This results in the trivial solution, which means that zero is
not an eigenvalue. Suppose thirdly that λ is negative: λ = −γ2.

d2φ

dx2
− γ2φ = 0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C5 cosh γx+ C6 sinh γx

Take a derivative of it with respect to x.

φ′(x) = γ(C5 sinh γx+ C6 cosh γx)

Apply the boundary conditions now to determine C5 and C6.

φ(0) = C5 = 0

φ′(L) = γ(C5 sinh γL+ C6 cosh γL) = 0

The second equation reduces to C6γ cosh γL = 0. Because hyperbolic cosine is not oscillatory, C6

must be zero. This results in the trivial solution, which means that there are no negative
eigenvalues.

Part (e)

d2φ

dx2
+ λφ = 0,

dφ

dx
(0) = 0, φ(L) = 0

Suppose first that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx

Take a derivative of it with respect to x.

φ′(x) = µ(−C1 sinµx+ C2 cosµx)
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Apply the boundary conditions now to determine C1 and C2.

φ′(0) = µ(C2) = 0 → C2 = 0

φ(L) = C1 cosµL+ C2 sinµL = 0

The second equation reduces to C1 cosµL = 0. In order to avoid the trivial solution, we insist
that C1 6= 0. Then

cosµL = 0

µL =
1

2
(2n− 1)π, n = 1, 2, . . .

µn =
1

2L
(2n− 1)π, n = 1, 2, . . . .

Therefore, there are positive eigenvalues λn = (2n− 1)2π2/(4L2), and the eigenfunctions
associated with them are

φ(x) = C1 cosµx+ C2 sinµx

= C1 cosµx → φn(x) = cos
1

2L
(2n− 1)πx.

Suppose secondly that λ is zero: λ = 0.
d2φ

dx2
= 0

The general solution is obtained by integrating both sides with respect to x twice.

dφ

dx
= C3

C3 is set to zero to satisfy φ′(0) = 0. Integrate once more.

φ(x) = C4

C4 is set to zero to satisfy φ(L) = 0. This results in the trivial solution, which means that zero is
not an eigenvalue. Suppose thirdly that λ is negative: λ = −γ2.

d2φ

dx2
− γ2φ = 0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C5 cosh γx+ C6 sinh γx

Take a derivative of it with respect to x.

φ′(x) = γ(C5 sinh γx+ C6 cosh γx)

Apply the boundary conditions now to determine C5 and C6.

φ′(0) = γ(C6) = 0 → C6 = 0

φ(L) = C5 cosh γL+ C6 sinh γL = 0
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The second equation reduces to C5 cosh γL = 0. Because hyperbolic cosine is not oscillatory, C5

must be zero. This results in the trivial solution, which means that there are no negative
eigenvalues.

Part (f)

d2φ

dx2
+ λφ = 0, φ(a) = 0, φ(b) = 0

Suppose only that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx

Apply the boundary conditions now to determine C1 and C2.

φ(a) = C1 cosµa+ C2 sinµa = 0 (1)

φ(b) = C1 cosµb+ C2 sinµb = 0 (2)

Solve equation (1) for C1.

C1 cosµa = −C2 sinµa → C1 = −C2
sinµa

cosµa

Substitute this result for C1 into equation (2).(
−C2

sinµa

cosµa

)
cosµb+ C2 sinµb = 0

Assume that C2 6= 0 and divide both sides by C2 cosµb.(
− sinµa

cosµa

)
+

sinµb

cosµb
= 0

− tanµa+ tanµb = 0

tanµb = tanµa

µb = µa+ nπ

µ(b− a) = nπ

µn =
nπ

b− a
, n = 1, 2, . . .

Note that n has the values it does because λ can’t be zero, and negative values of n yield
redundant values of λ. Therefore, there are positive eigenvalues λ = n2π2/(b− a)2, and the
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eigenfunctions associated with them are

φ(x) = C1 cosµx+ C2 sinµx

=

(
−C2

sinµa

cosµa

)
cosµx+ C2 sinµx

=
C2

cosµa
(− sinµa cosµx+ sinµx cosµa)

=
C2

cosµa
sinµ(x− a)

= C3 sinµ(x− a) → φn(x) = sin
nπ(x− a)
b− a

.

Part (g)

d2φ

dx2
+ λφ = 0, φ(0) = 0,

dφ

dx
(L) + φ(L) = 0

Suppose first that λ is positive: λ = µ2.

d2φ

dx2
+ µ2φ = 0

The general solution is written in terms of sine and cosine.

φ(x) = C1 cosµx+ C2 sinµx

Take a derivative of it with respect to x.

φ′(x) = µ(−C1 sinµx+ C2 cosµx)

Apply the boundary conditions now to determine C1 and C2.

φ(0) = C1 = 0

φ′(L) + φ(L) = µ(−C1 sinµL+ C2 cosµL) + C1 cosµL+ C2 sinµL = 0

The second equation reduces to C2µ cosµL+ C2 sinµL = 0. In order to avoid the trivial solution,
we insist that C2 6= 0. Then

µ cosµL+ sinµL = 0

sinµL = −µ cosµL

tanµnL = −µn, n = 1, 2, . . . .

Therefore, there are positive eigenvalues λn = µ2n, and the eigenfunctions associated with them are

φ(x) = C1 cosµx+ C2 sinµx

= C2 sinµx → φn(x) = sinµnx.

Suppose secondly that λ is zero: λ = 0.
d2φ

dx2
= 0

The general solution is obtained by integrating both sides with respect to x twice.

dφ

dx
= C3
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φ(x) = C3x+ C4

Apply the boundary conditions now to determine C3 and C4.

φ(0) = C4 = 0

φ′(L) + φ(L) = C3 + C3L+ C4 = 0

Since C4 = 0, the second equation reduces to C3(1 + L) = 0, so C3 must be zero as well. This
results in the trivial solution, which means that zero is not an eigenvalue. Suppose thirdly that λ
is negative: λ = −γ2.

d2φ

dx2
− γ2φ = 0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C5 cosh γx+ C6 sinh γx

Take a derivative of it with respect to x.

φ′(x) = γ(C5 sinh γx+ C6 cosh γx)

Apply the boundary conditions now to determine C5 and C6.

φ(0) = C5 = 0

φ′(L) + φ(L) = γ(C5 sinh γL+ C6 cosh γL) + C5 cosh γL+ C6 sinh γL = 0

The second equation reduces to C6γ cosh γL+ C6 sinh γL = 0. To avoid getting the trivial
solution, we insist that C6 6= 0. Then

γ cosh γL+ sinh γL = 0

sinh γL = −γ cosh γL

tanh γL = −γ.

The graph of tanh γL does not intersect −γ at any nonzero value of γ, so there are no negative
eigenvalues.
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