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Exercise 2.5.1

Solve Laplace’s equation inside a rectangle 0 <z < L, 0 <y < H, with the following boundary
conditions [Hint: Separate variables. If there are two homogeneous boundary conditions in y, let
u(x,y) = h(z)p(y), and if there are two homogeneous boundary conditions in x, let

u(z,y) = ¢(x)h(y).]:

@ 20)=0,  ULy=0, u(z0)=0, (e, H) = f(2)
(b) U0 =), S (Ly) =0,  u(z.0)=0, (e, H) =
© S0.0)=0  w(ly)=gl). u(z0)=0 (e, 1) =
(d) u0.9)=g(y).  w(Ly)=0, g;‘@:, 0) =0, ule, ) =
() u(0.y) =0, W(Ly) =0, u(z,0) g;u, 0)=0, uz.H)= f(x)
ou ou
(f) U(an) :f(y>7 U(Lvy) :Oa @(xao) _07 87y<x’H) =
ou B ou B R ou B
(g) %(Ovy)_oa %(Iﬁy)_oa u(x,()) {1 $<L/2 @(x7H)_O
(h) u(O,y) :O’ U(Lay) :g(y)v u(ZEaO) _Oa ’LL(CL’,H) =0
Solution
Part (a)
VQU—Z:; g?;—o, 0<z<L 0<y<H
gZ(O,y) 0
u(xz,0) =0
u(e, H) = f(x)

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X (x)Y (y) and substitute it into the PDE

24 9 )
(;yz =0 (fijz[X(@Y(y)] + aayQ[X(x)Y(y)] —0

o
0z2
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and the homogeneous boundary conditions.

0
a—;‘(o, y) =0 - X'(0)Y(y) =0 — X'(0)=0
ou , ,
%(L,y) =0 — X' (L)Y (y)=0 — X(L)=0
u(z,0) =0 — X(@)Y(0)=0 — Y(0)=0
Separate variables in the PDE.
d?X d?Y
Y— — =0
dz? + dy?
Divide both sides by X ()Y (y).
1d?°X  1dY 0

Xd? " YaE
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

1d°X  1d%
X dz?2 Y dy?
SN—— ———

function of z  fynction of y

The only way a function of x can be equal to a function of y is if both are equal to a constant A.

1 d®2X 1 d%Y

X de? Y dy?
As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in y.
1d°X
X da?
1d?Y
Y aE
Values of A for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since
there are two boundary conditions for it. Suppose first that A is positive: A = 2. The ODE for
X becomes

A

X" =a*X
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
X (x) = C1 cosh ax + Cysinh ax

Take a derivative of it.
X'(x) = a(C} sinh ax + C5 cosh ax)

Apply the boundary conditions to determine Cy and Cos.

X'(0) =a(C2) =0
X'(L) = a(Cy sinh L + CycoshaL) =0
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The first equation implies that Cs, so the second one reduces to Ciasinh a = 0. No nonzero
value of « satisfies this equation, so C; must be zero. The trivial solution is obtained, so there are
no positive eigenvalues. Suppose secondly that A is zero: A = 0. The ODE for X becomes

X" =0.

Integrate both sides with respect to x.
X' =Cs

Apply the boundary conditions to determine Ci.

X'(0)=C3=0
X' (L)=C35=0
Consequently,
X' =0.

Integrate both sides with respect to x once more.
X(x)=Cy

Because X (z) is nonzero, zero is an eigenvalue; the eigenfunction associated with it is Xo(z) = 1.
With this value for A, solve the ODE for Y.

Y'=0
Integrate both sides with respect to y twice.
Y(y) = Csy + Cs
Apply the boundary condition to determine one of the constants.
Y(0)=Cs=0

So then
Y (y) = Csy.

Suppose thirdly that A is negative: A = —32. The ODE for X becomes
X" =-p°X.
The general solution is written in terms of sine and cosine.
X (x) = Cr7cos fx + Cgsin fx

Take a derivative of it.
X'(z) = B(—Crsin Bz + Cs cos Bz)

Apply the boundary conditions to determine C; and Cs.

X'(0)=5(Cs) =0
X'(L) = B(—C7sin BL + Cg cos BL) = 0
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The first equation implies that Cgs = 0, so the second one reduces to —C7Ssin 8L = 0. To avoid
getting the trivial solution, we insist that C%7 # 0. Then

—BsinBL =0
sin 8L =0
BL=nw, n=12,...
nmw
5n = f
There are negative eigenvalues \ = —n272 / L27 and the eigenfunctions associated with them are

X (x) = Crcos fx + Cgsin fx

= CrcosBx — Xn(a:):cosﬂ;.

With this formula for A, solve the ODE for Y now.

2y n’r?
dy? L2

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
n n
Y (y) = Cy cosh YL C1p sinh nry
L L
Use the boundary condition to determine one of the constants.
Y(0)=Cy=0

So then i
Y (y) = Cipsinh Ty

According to the principle of superposition, the general solution to the PDE for u is a linear
combination of X (x)Y (y) over all the eigenvalues.

oo
u(z,y) = Aoy + Z A, cos ? sinh %

n=1

Use the final inhomogeneous boundary condition u(x, H) = f(x) to determine Ay and A,,.

. H
u(z, H) = AgH + g A, sinh mlr_/ cos nLﬂ = f(x) (1)
n=1

To find Ay, integrate both sides of equation (1) with respect to  from 0 to L.

L o0 H L
/0 (AOH + Z A, sinh mlr; cos ) dp = f(z)dz

n=1

Split up the integral on the left and bring the constants in front.

L o0 g (L L
AOH/O dw+n§_:1Ansinhmlr; /Ocosnzxda:: i f(x)dx
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ApHL = /L f(z)dx
0

1 L
Ay = HL/O f(z)dx

To find A,,, multiply both sides of equation (1) by cos(mmx/L), where m is an integer,

So then

AoH cos 2L 4 Z Ay sinh Lx cos m;r:c = f(x) cos mzx
and then integrate both sides with respect to « from 0 to L.
L nTr  mnx L mnx
/0 AoH cos % Z Ay, sinh — 7 Cos— dr = /0 f(x)cos T dz

Split up the integral on the left and bring the constants in front.

nrH L L
AoH/ cos / cos % cos m;m dr = / f(@) cos =
0 0

L
Because the cosine functions are orthogonal, the second integral on the left is zero if n # m. As a
result, every term in the infinite series vanishes except for the one where n = m.

H L L
A, sinh nr / cos? 2 gy = / f(z) cos L
L J, . L

xdx

dx + Z A, smh

L

( )= [ e

A, = cos —_— da:
L sinh @2 ””H / Us

A, smh

So then
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Part (b)
?u 0%
Y= = <zr<L 0<y<H

ou

5, 0:9) = 9()

ou

u(z,0) =0

u(z,H) =0

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X(2)Y (y) and substitute it into the PDE

?u  0%u 0? 0?
o2 o2 0 W[X(:c)Y(y)] + @[X(m)y(y)] =0
and the homogeneous boundary conditions.
ou , ,
%(L,y) =0 — X' (L)Y(y)=0 — X'(L)=0
u(xz,0) =0 — X(2)Y(0)=0 — Y(0)=0
u(x, H) =0 — X(x)Y(H)=0 — Y(H)=0
Separate variables in the PDE.
d*X d?Y
Y X =0
dz? + dy?
Divide both sides by X ()Y (y).
1 d°X 1¥Y_0

X da? + Y dy?
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

1d°X  1d%Y
X dz?2 Y dy?
——

function of x function of y

The only way a function of x can be equal to a function of y is if both are equal to a constant .

1 d*X 1d?Y

X dz2 Y dy?

As a result of applying the method of separation of variables, the PDE has reduced to two

ODEs—one in « and one in y.
1d°X
X dzx?
1d%Y

Y dy?
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Values of A for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for Y first since
there are two boundary conditions for it. Suppose first that X is positive: A = 2. The ODE for Y’
becomes

V" = —a?Y.

The general solution is written in terms of sine and cosine.
Y (y) = Ci cosay + Cosin ay
Apply the boundary conditions to determine C; and CS.

Y(0)=Ci=0
Y(H) =CicosaH + CysinaH =0

The second equation reduces to CysinaH = 0. To avoid getting the trivial solution, we insist
that Cs # 0. Then

sinaH =0
aH=nm, n=1,2,...
nmw

There are positive eigenvalues A = n?72/H?, and the eigenfunctions associated with them are

Y (y) = Cicosay + Cysinay
= Cysinay —  Yp(y) =sin n—;r[y

With this formula for A, the ODE for X becomes

d2X B n2n?

dz?2  H?2

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
nmx nmx
X(z)=0C h—— + C4sinh ——
(x) 3cosh — + Cysin i

Take a derivative of it.

X'(z) = %T (Cg sinh % + Cy cosh @)

H
Apply the boundary condition to determine one of the constants.

X'(L) = %” (cg sinh% + Cy cosh ”ZL) =0 — Cp= —Cg(w
So then
X(x) = C3cosh n;x —Cs Z::};T% sinh n;rlx
= cosg?;? (cosh % cosh % — sinh n;rIL sinh ?ZB)
= cosf?;‘};L cosh [%(x — L)} —  Xp(x) = cosh [n—}?(x — L)} .
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Suppose secondly that A is zero: A = 0. The ODE for Y becomes
Y” =0.
Integrate both sides with respect to y twice.
Y(y) =Csy+Cs
Apply the boundary conditions to determine C5 and Cs.
Y(0)=Cs=0

The second equation reduces to C5H = 0, which means C5 = 0. The trivial solution Y (y) = 0 is
obtained, so zero is not an eigenvalue. Suppose thirdly that A is negative: A = —32. The ODE for
Y becomes

Y” = %Y.
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
Y (y) = C7 cosh By + Cg sinh By
Apply the boundary conditions to determine C; and Cs.
Y(0)=Cr=0
Y (H) = C7cosh SH + Cgsinh H =0

The second equation reduces to Cgsinh SH = 0. No nonzero value of 8 can satisfy this equation,
so Cg must be zero. The trivial solution Y (y) = 0 is obtained, which means there are no negative
eigenvalues. According to the principle of superposition, the general solution to the PDE for u is
a linear combination of X (z)Y (y) over all the eigenvalues.

u(z,y) = Z By, cosh [%(CE - L)} sin %
n=1

Use the remaining inhomogeneous boundary condition 2 9:(0,y) = g(y) to determine B,. Take a
derivative of the general solution with respect to x.

ZB Sth[H(x—L)} sm%
Apply the boundary condition.

ou B > nmw . nmw . nmy
So(0,y) = D7 By sinh | (L) | sin =2 = ()

n=1

> nmw nmwL nmwy
Z (—BnH sinh H) sin 7 = 9(y)

n=1
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To find B,,, multiply both sides by sin(mny/H ), where m is an integer,

o0
L
Z <—Bnm sinh *% > sin 7Y gin 1Y g(y) sin mry

H H H H H

n=1

and then integrate both sides with respect to y from 0 to H.

/Hi er ,hnﬂ'L nmwy mﬂ'yd /H () si mﬂyd
—Bjp——sinh — | sin —=sin —= dy = sin ——=
0 & g H H 7 W= . 9y g Y

Bring the constants in front of the integral on the left.

> nmw nmwL H oy mmy H mmy
Z (—B T sinh H) /0 sin A sin 2 dy = /0 g(y) sin A dy

n=1

Because the sine functions are orthogonal, the integral on the left is zero if n # m. As a result,
every term in the infinite series vanishes except for the one where n = m.

L H H
(—B TZTS h—n;[ )/0 sin2n;ydy:/0 g(y)sin%dy

nwlL H H . Ny
< B, FSl h) (2) —/0 g(y)81n7dy

Bn = nm sinh 22= "”L / sm dy

So then
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Part (c)

ou
—(0,y) =0
52 0 Y)
u(L,y) = g(y)
u(xz,0) =0
u(z,H) =0
Because Laplace’s equation and all but one of the boundary conditions are linear and

homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X(2)Y (y) and substitute it into the PDE

Pu  0%u 0? 0?
92 02 0 = @[X(JU)Y(?J)] + 55

and the homogeneous boundary conditions.

ou

%(O,y) =0 — X'(0)Y(y)=0 — X'(0)=0
u(z,0) =0 — X(x)Y(0)=0 — Y(0)=0
u(z,H) =0 — X(@)Y(H)=0 — Y(H)=0
Separate variables in the PDE.
?X d?Y
Y—+X— =
dz? + dy? 0
Divide both sides by X ()Y (y).
1d°X  1d%Y 0

Xda? " YapE
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

1d°X  1d%Y
X dz?2 Y dy?
——

function of x function of y

The only way a function of x can be equal to a function of y is if both are equal to a constant .

1 d*X 1d?Y

X dz® Y d?
As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in z and one in y.
1 d*X
—
X dx?
1d?Y
Y dy?
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Values of A for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for Y first since
there are two boundary conditions for it. Suppose first that X is positive: A = 2. The ODE for Y’
becomes

V" = —a?Y.

The general solution is written in terms of sine and cosine.
Y (y) = Cicosay + Cosinay

Apply the boundary conditions to determine C; and CS.

Y(H) =CicosaH + CysinaH =0

The second equation reduces to CysinaH = 0. To avoid getting the trivial solution, we insist
that Cy # 0. Then

sinaH =0
aH=nm, n=1,2,...
nm

There are positive eigenvalues A = n?72/H?, and the eigenfunctions associated with them are

Y (y) = Cicosay + Cosinay

= Cysinay —  Y,(y) =sin %

With this formula for A, the ODE for X becomes

d2X  n2n?
dz?2  H?

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
nmwx nmx
X(x) = C3cosh — + C4 sinh ——
(x) 3 i 4sinh —
Take a derivative of it.

nm .. nmx nwx
X'(x) = T <C3 sinh H + C4 cosh ?)

Apply the boundary condition to determine one of the constants.
X0)="Z@C)=0 — Ci=0
H
So then
X (x) = Cscosh % —  Xp(x) = cosh -
Suppose secondly that A is zero: A = 0. The ODE for Y becomes

Y" =0.
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Integrate both sides with respect to y twice.
Y(y) =Csy+Cs
Apply the boundary conditions to determine C5 and Cj.
Y(0)=Cs=0
Y(H)=CsH +Cs =0

The second equation reduces to CsH = 0, which means C5 = 0. The trivial solution Y (y) =0 is
obtained, so zero is not an eigenvalue. Suppose thirdly that A is negative: A = —32. The ODE for
Y becomes

Y// _ BQY

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
Y (y) = C7 cosh fy + Cg sinh By
Apply the boundary conditions to determine C7 and Cs.
Y(0)=C;=0
Y (H) = C7cosh fH + Cgsinh H =0

The second equation reduces to Cgsinh SH = 0. No nonzero value of § can satisfy this equation,
so Cg must be zero. The trivial solution Y (y) = 0 is obtained, which means there are no negative
eigenvalues. According to the principle of superposition, the general solution to the PDE for u is
a linear combination of X (z)Y (y) over all the eigenvalues.

oo
u(x,y) = Z B,, cosh % sin %
n=1

Use the remaining inhomogeneous boundary condition u(L,y) = ¢g(y) to determine B,,.

sin 7Y — g(y)

nrlL | nmy
H H

u(L,y) = Z By, cosh

n=1

Multiply both sides by sin(mmy/H), where m is an integer,

and then integrate both sides with respect to y from 0 to H.

" nmwlL nmwy mmy H mmy
/ Z B,, cosh i sin sin dy = / g(y) sin —= dy
0 0

H H H

Bring the constants in front of the integral on the left.

iB hmrL/H . nwy . mﬂyd /H () si mTryd
cosh —— sin —= sin —= dy = sin —=
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Because the sine functions are orthogonal, the integral on the left is zero if n # m. As a result,

every term in the infinite series vanishes except for the n = m one.

H
B, cosh/ H y:/o g(y)sin%dy
L (H
B, coshﬂ <2> sm%dy
So then
" H cosh 2iL "”L / sm dy
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Part (d)

ou

u(z,H) =0

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X (2)Y (y) and substitute it into the PDE

2, 2, 2 2
3@*3&20 . ;;M@W@ﬂ+iﬂX@W@H=O

and the homogeneous boundary conditions.

u(L,y) =0 — X(L)Y(y)=0 — X(L)=0
0
aiy‘(x, 0)=0 — X (2)Y'(0) =0 — Y'(0) =0
u(z,H) =0 — X(z)Y(H)=0 — Y(H)=0
Separate variables in the PDE.
d?X ?Y
Y—+X—=0
dz? + dy?
Divide both sides by X (z)Y (y).
1 d*X 1¥Y70

Xda? " YapE
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

1d°X  1d%Y
X dx2 Y dy?
——

function of x function of y

The only way a function of z can be equal to a function of y is if both are equal to a constant A.

1dPX 1Y
X dz2 Y dy?

As a result of applying the method of separation of variables, the PDE has reduced to two

ODEs—one in x and one in y.
1d°X
X dzx?
1d%Y

Y dy?
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Values of A for which nontrivial solutions of these equations exist are called eigenvalues, and the
solutions themselves are known as eigenfunctions. We will solve the ODE for Y first since there
are two boundary conditions for it. Suppose first that A is positive: A = a®>. The ODE for YV’

becomes
" __ 2
Y" = —a*Y.

The general solution is written in terms of sine and cosine.
Y (y) = Cicosay + Cysinay

Take a derivative of it.

Y'(y) = a(—Ci sinay + Cy cos ay)
Apply the boundary conditions to determine C and Cos.

Y'(0) = a(Cy) =0

Y(H) =CicosaH + CysinaH =0

The first equation implies that Co = 0, so the second one reduces to Cy cosaH = 0. To avoid
getting the trivial solution, we insist that C; # 0. Then

cosaH =0

1
aH:§(2n—1)7r, n=12,...

L on—1)m.

Y

There are positive eigenvalues A = (2n — 1)?72/(4H?), and the eigenfunctions associated with
them are

Y (y) = Cjcosay + Cysinay

@n =Dy

=Cicosay — Y,(y) = cos 5H

With this formula for A, the ODE for X becomes

*X  (2n—1)*n?

= X.
dxz? 4H?2

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

(2n — 1)mx 4 Cusinh (2n — )7z

X(w):C;gcoshT SH

Apply the boundary condition to determine one of the constants.

. (2n—1)wL
(2n — )7L L (2n—1)nL sinh ~=o7=
X(L) 203COShT+C4bIHhT =0 — 03:—C4W
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So then
X(x) = C3 cosh w + Cysinh (2712—;)7m
- 4:2}; ((22:25:)72 cosh ( n;}})m; + Cysinh (27:};)7”3
- ‘h<CH> siny P DL oy (2 DT o 2= DL gy, (20— L
) cosh gj;é)ﬂL b e 12)7;[(L _— Xy (z) = sinh (2n 12)I7T1f(L — x)

Suppose secondly that A is zero: A = 0. The ODE for Y becomes
YY" =0.

Integrate both sides with respect to y.
Y =C5

Apply the first boundary condition to determine Cs.
Y'(0)=C5 =0

Consequently,
Y' =0.

Integrate both sides with respect to y once more.
Y(y) = Cs
Apply the second boundary condition to determine Cj.
Y(H)=Cs=0

The trivial solution Y (y) = 0 is obtained, so zero is not an eigenvalue. Suppose thirdly that \ is
negative: A = —32. The ODE for Y becomes

Y// _ BQY
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
Y (y) = C7 cosh By + Cg sinh Sy

Take the derivative of it.
Y'(y) = B(C+ sinh By + Cs cosh By)

Apply the boundary conditions to determine C7 and Cs.

Y'(0) = B(Cs) =0
Y(H) = C7cosh BH + Cgsinh fH =0

The first equation implies that Cs = 0, so the second one reduces to C7 cosh SH = 0. No nonzero
value of 3 can satisfy this equation, so C7 must be zero. The trivial solution Y (y) = 0 is obtained,
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which means there are no negative eigenvalues. According to the principle of superposition, the
general solution to the PDE for u is a linear combination of X ()Y (y) over all the eigenvalues.

= on — 1)m(L — on —1
u(:ﬂ,y):ZAnsinh( n 2);;_( 7) cos( nQH)ﬂy
n=1

Use the remaining inhomogeneous boundary condition u(0,y) = ¢g(y) to determine A,

. 2n—)rL  (2n—1
u(0,y) = ZA” sinh (2n = D cos (2n = Dy =g(y)
n=1

2H 2H

Multiply both sides by cos[(2m — 1)7y/(2H)]

cos cos = g(y) cos

oo

2n — 1)L 2n —1 2m —1
S s G DTL = Dy (= 1)y
= 2H 2H 2H

and then integrate both sides with respect to y from 0 to H.

H 2n—17nL  (2n—1)my (2m — 1)y = (2m — 1)y
A,, sinh dy = —=d
/0 nzl n Sin 5H cos 5H cos 5H Y /0 g(y) cos 5H Yy

Bring the constants in front of the integral on the left.

fe'e) H H
. 2n — 1)wL 2n — Dm 2m — 1)« 2m — 1)w
ng_lAnmnh(QH)/O cos( ZH) ycos( 2H) ydy:/o g(y)cos(ﬂ_[)ydy

Because the cosine functions are orthogonal, the integral on the left is zero if n # m. As a result,
every term in the infinite series vanishes except for the n = m term.

on—1)nL [H on —1 H on —1
A, sinh 2= DL / cos2 =Ly / o) cos =V 4
0 0

2H 2H 2H
. (2n—1)rL (HY _ /H (2n — Dy
A, sinh i )=/, 9(y) cos Vi dy
So then
2 H (2n — 1)my
4, = | atwyeos &0 .
. 2n—1)wL
H sinh (T 0 2H
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Part (e)
Pu 0%
2y == 4+ 2= <x<L 0<y<H
V4u 8$2+8y2 0, 0<x<L,0<y<
u(0,y) =0
u(L,y) =0
ul,0) ~ 5 ,0) =
u(z, H) = f(x)

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X(2)Y (y) and substitute it into the PDE

*u 0% ? 0?2

mtap =0 7 32 XK@Y W]+ 551X (@)Y ()] =0

Y

and the homogeneous boundary conditions.

u(0,y) =0 - X0)Y(y)=0 - X(0)=0
u(L,y) =0 - X(L)Y(y)=0 - X(L)=0
u(z,0) — gu(x,O) =0 = X@Y0)-X)Y'(0)=0 — Y(0)-Y'(0)=0
Y
Separate variables in the PDE.
d?X d?Y
vES xS =
dz? + dy? 0
Divide both sides by X (z)Y (y).
1 d?°X 1¥Y_0

Xd2 Y dE -
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

1d°X  1d%Y
X dz?2 Y dy?
——

function of x function of y

The only way a function of x can be equal to a function of y is if both are equal to a constant A.

1 d®2X 1 d%y

X da? Y dy?

As a result of applying the method of separation of variables, the PDE has reduced to two

ODEs—one in x and one in y.
1d°X
X dzx?
1d%Y

Y dy?
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Values of A for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since
there are two boundary conditions for it. Suppose first that X is positive: A = 2. The ODE for
X becomes

X" =d’X.

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
X (z) = Cy cosh ax + Cy sinh ax
Apply the boundary conditions to determine C and Cos.

X(0)=C, =0
X (L) = Cycoshal + Cysinhal =0

The second equation reduces to Cs sinh oL = 0. No nonzero value of « satisfies this equation, so
C5 must be zero. The trivial solution is obtained, so there are no positive eigenvalues. Suppose
secondly that A is zero: A = 0. The ODE for X becomes

X// — O
Integrate both sides with respect to z twice.
X(x) =Csz+ Cy
Apply the boundary conditions to determine Ci.

X(0)=Cy =0
X(L)=C3L+Cy=0

The second equation reduces to C3L = 0, so C3 = 0. The trivial solution X (z) = 0 is obtained,
which means zero is not an eigenvalue. Suppose thirdly that X is negative: A = —32. The ODE
for X becomes

X" =-p°X.

The general solution is written in terms of sine and cosine.
X (x) = Crcos fx + Cgsin fx
Apply the boundary conditions to determine C7 and Cs.

X(0)=Cr=0
X(L)=Crcos L+ Cgsin L =0

The second equation reduces to Cgsin BL = 0. To avoid getting the trivial solution, we insist that
Cg # 0. Then

sinfL =0
BL=nm, n=12,...
nm
B =T,
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There are negative eigenvalues A = —n?72/L?, and the eigenfunctions associated with them are

X (x) = Crcos fx + Cgsin fx
nwx

=Cgsinffxz — Xn(a:):sinT.

With this formula for A, solve the ODE for Y now.

A2y  n2n?

dy? L2
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = Cy cosh % + Cqg sinh ?

Take a derivative of it.
Y'(y) = <C’9 sinh ~+¥ C1o cosh —)

Use the boundary condition to determme one of the constants.
Y(0) - Y'(0) = Co — %(cm) —0 o Cy= %cm
So then
Y (y) = Cy cosh % + Cyo sinh %
= %Cm cosh % + Cg sinh ?
nmy

_ Cvo (sinh "™ 4 T cogh ™Y i Y T oy ™Y
—Cm(smhL—i-LcoshL) - Yu(y) = 81nhL+L hL.

According to the principle of superposition, the general solution to the PDE for u is a linear
combination of X (z)Y (y) over all the eigenvalues.

o
)= 3B ()

Use the final inhomogeneous boundary condition u(x, H) = f(x) to determine B,,.

mH nm nrtH\ . nrx
ZB <s1nh + fcosh 7 ) sin —— = f(x)

Multiply both sides by sin(mmz/L), where m is an integer,

TH nrm ntH\ . nmx . mnx . mnzx
2:: (smh —I—Tcosh 7 )sm 7 sin— = f(z)sin

and then integrate both sides with respect to x from 0 to L.

L L
H H
/ g B, (sinh m; + 27 cosh 22 ) sin L gin T dy = / f(z)sin mgm dx
1 0

L L
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Bring the constants in front of the integral on the left.

oo

H H
Z B, smh + nr cosh it / sin nre sin me dr = / f(x Sln —_— d:v
L L 0 L

Because the sine functions are orthogonal, the integral on the left is zero if n # m. As a result,
every term in the infinite series vanishes except for the n = m one.

H H
B, | sinh nr + M7 cosh 22 / sin? 7 g = / f(z)sin @ dx
L L L 0

H H
Bn<sinhm£ +%c hm> () /f sm—daz

So then

B, = / f(z sin@d:ﬁ

2
L (sinh ”TEH + ”T
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Part (f)
Pu

20 = = <z< <y <
\Y% 8x2+8y2 0, 0<zxz<L,0<y<H
u(0,y) = f(y)

u(L,y) =0

ou

ou

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X(2)Y (y) and substitute it into the PDE

?u  0*u 0? 0?
@4‘87?/2—0 W[X(a:)Y(y)]—i—a—yz[

and the homogeneous boundary conditions.

X(2)Y (y)] =0

u(L,y) =0 — X(L)Y(y)=0 — X(L)=0
g:(m, 0)=0 — X(z)Y'(0) =0 — Y'(0) =0
ou , p
@(x,H):() — X(x)Y'(H)=0 — Y'(H)=0
Separate variables in the PDE. , ,
Y% + X(fly}; =0

Divide both sides by X ()Y (y).
1dx 1V
X de?2 Y dy?
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

0

1d°X  1d%Y
X dx2 Y dy?
——

- Vv
function of = function of y

The only way a function of z can be equal to a function of y is if both are equal to a constant .
1d°X 14
X dz2 Y dy?

As a result of applying the method of separation of variables, the PDE has reduced to two

ODEs—one in x and one in y.
1d°X
X dzx?
1d%Y

Y dy?
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Values of A for which nontrivial solutions of these equations exist are called eigenvalues, and the
solutions themselves are known as eigenfunctions. We will solve the ODE for Y first since there
are two boundary conditions for it. Suppose first that A is positive: A = a®>. The ODE for YV’
becomes
V" = —a?Y.
The general solution is written in terms of sine and cosine.
Y (y) = Ci cosay + Cosin ay
Take a derivative of it.
Y'(y) = a(—C} sinay + Cy cos ay)
Apply the boundary conditions to determine C7 and Cs.
Y'(0) = a(Cy) =0
Y'(H) = a(-CysinaH + CycosaH) = 0
The first equation implies that Co = 0, so the second one reduces to —Ciasin aH = 0. To avoid
getting the trivial solution, we insist that C7 # 0. Then

—asinaH =0

sinaH =0
aH=nm, n=1,2,...
nmw

There are positive eigenvalues A = n?72/H?, and the eigenfunctions associated with them are

Y (y) = Cicosay + Caysinay
=Cicosay — Y,(y )—cos@.
H

With this formula for A, the ODE for X becomes

2X 2.2

EX _n?r?

dx? H?
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X( ) 03 COSh T + 04 sinh %
Apply the boundary condition to determine one of the constants.
L nrl sinh 22k
X C B2y oysinh T2 =0 5 Oy = Oy
( ) 3 COS + Cysin H 3 4 cosh n;rIL
So then
nmwx . . NTT
X(z) = Cs cosh N + Cysinh N
sinh 2xk nmx nwx
_ H :
= —04 cosh nIT_rIL cosh H + 04 sinh ?
C L L
— _coshil’}L <smh % cosh % — cosh n;; sinh T)
Cy ., nmn(L—x) ., nmn(L—x)
= L sinh I Xy (z) = sinh —g
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Suppose secondly that A is zero: A = 0. The ODE for Y becomes
Y” =0.

Integrate both sides with respect to y.
Y' =Cs

Apply the boundary conditions to determine Cs.

Y'(0)=C5=0
Y'(H)=Cs;=0
Consequently,
Y' =0.

Integrate both sides with respect to y once more.
Y(y) = Cs

Because Y (y) is nonzero, zero is an eigenvalue; the eigenfunction associated with it is Yp(y) = 1.
Now solve the ODE for X with A = 0.
X"=0

Integrate both sides with respect to = twice.
X(x) = Crzx+ Cs
Apply the boundary condition to determine one of the constants.
X(L)=C;L+Csg=0 — C(Cs=-C7L
Consequently,

X(z) = Crx + Cg
= C7ZE — C7L
=—Cy(L—z) — Xu(x)=L-u.

Suppose thirdly that X is negative: A\ = —32. The ODE for Y becomes
vy — 62Y-
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
Y (y) = C7 cosh py + Cg sinh By

Take the derivative of it.
Y'(y) = B(Cysinh By + Cs cosh By)

Apply the boundary conditions to determine C; and Cs.

Y'(0) = B(Cs) =0
Y'(H) = B(Cqsinh BH + Cgcosh BH) = 0
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The first equation implies that Cg = 0, so the second one reduces to C75sinh BH = 0. No nonzero
value of 3 can satisfy this equation, so C7 must be zero. The trivial solution Y (y) = 0 is obtained,
which means there are no negative eigenvalues. According to the principle of superposition, the
general solution to the PDE for u is a linear combination of X ()Y (y) over all the eigenvalues.

o0 L o
u(z,y) = Ap(L —z) -1+ Z A,, sinh n( i 7) cos ngy

n=1

Use the remaining inhomogeneous boundary condition u(0,y) = f(y) to determine Ay and A,,.

- L
u(0,y) = AL + Z A, sinh % cos —= = f(y) (2)

n=1

To find Ay, integrate both sides of equation (2) with respect to y from 0 to H.

H 00 H
L
/0 (AOL + ngl A,, sinh % cos nH7ry> dy = /0 f(y)dy

Split up the integral on the left and bring the constants in front.
H o0 H
AOL/ dy + Z A, sinh "7~ / cos 1Y dy = / fy)dy
0 o 0

Evaluate the integrals.

H
AOLH_/O fy)dy

H
Ao= 7 [ sy

To find A,,, multiply both sides of equation (2) by cos(mmy/H), where m is an integer,

So then

mmy
H

ApL cos mry

o0
L
+2Ansinh n; €08 —= €08 — = f(y) cos

and then integrate both sides with respect to y from 0 to H.

H
/0 <AOL cos + Z An sinh - H Y cos mwy) / fly Cos dy
Split up the integral on the left and bring the constants in front of them.
i Ty Ty
AOL/ cos I dy—i—ZA smh/ os?cos / fly cos dy

=0

Because the cosine functions are orthogonal, the second integral on the left is zero if n # m. As a
result, every term in the infinite series vanishes except for the n = m one.

L H H
Ansinhz/o cos2nH7Tyaly:/O f(y)cos%dy
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A, sinh —— nmL ( > / fly COS — dy

A, = —=
H sinh 27& "“L / Iy COS

So then
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Part (g)
VQu—gZ+gZZ—O7 0<z<L 0<y<H
0. =0
(L) =0
u(z,0) = f(z) = {(1] zzig
gngzo

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X (x)Y (y) and substitute it into the PDE

*u 0% 0?2 0?
—t — = —[X(2)Y —
ot =0 = GaX@YE+

and the homogeneous boundary conditions.

ou

8—33(0,3/) =0 — X' (0)Y(y) =0 — X'(0)=0
ou , ,
%(L,y) =0 — X' (L)Y (y)=0 — X(L)=0
ou , ,
6—y(w,H):0 — X(x)Y'(H)=0 — Y'(H)=0
Separate variables in the PDE.
d’X d’y
Y—4+X—5=0
dz? + dy?

Divide both sides by X (z)Y (y).
1¥X+1¥Y_
X de?2 Y dy?
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

0

1d°X  1d%
X dz?2 Y dy?
N e’

function of £ fynction of y

The only way a function of z can be equal to a function of y is if both are equal to a constant .

1dX 1Y
X dz2 Y dy?
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As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in y.
1d°X
X dz?
1d?Y
_?Ty2 =
Values of A\ for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since
there are two boundary conditions for it. Suppose first that X is positive: A = o2. The ODE for
X becomes

A

X" =a*X
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
X (x) = C1 cosh ax + Cysinh ax

Take a derivative of it.
X'(z) = a(C} sinh ax + Cy cosh ax)

Apply the boundary conditions to determine C and Cos.
X’(O) = OZ(CQ) =0
X'(L) = a(Cy sinh oL + CycoshaL) =0

The first equation implies that Cs, so the second one reduces to Cyasinh aL = 0. No nonzero
value of « satisfies this equation, so C; must be zero. The trivial solution is obtained, so there are
no positive eigenvalues. Suppose secondly that A is zero: A = 0. The ODE for X becomes

X" =o0.

Integrate both sides with respect to x.
X' =C;

Apply the boundary conditions to determine Cj.

X'(0)=C3=0
X'(L)y=0C3=0
Consequently,
X' =0.

Integrate both sides with respect to x once more.
X(z)=0Cy

Because X (z) is nonzero, zero is an eigenvalue; the eigenfunction associated with it is Xo(z) = 1.
With this value for X, solve the ODE for Y.

Integrate both sides with respect to y.
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Apply the boundary condition to determine one of the constants.
Y'(H)=C5=0

So then
Y' =0.

Integrate both sides with respect to y once more.
Y(y) =Cs
Suppose thirdly that A is negative: A = —32. The ODE for X becomes
X" =-p°X.
The general solution is written in terms of sine and cosine.
X (x) = Crcos fx + Cgsin fx

Take a derivative of it.

X'(z) = B(—C7sin Bz + Cs cos Bz)
Apply the boundary conditions to determine C7 and Cs.

X'(0) = pB(Cs) =0
X'(L) = B(—Crsin BL + Cg cos BL) = 0

The first equation implies that Cs = 0, so the second one reduces to —C78sin BL = 0. To avoid
getting the trivial solution, we insist that C% # 0. Then

—BsinBL =0
sinL =0
BL=nmt, n=12,...
nm
571 - f
There are negative eigenvalues A = —n?72/L?, and the eigenfunctions associated with them are

X (x) = Crcos fx + Cgsin fx

=Crcosffxr  — Xn(m):cos?.

With this formula for A, solve the ODE for Y now.

A2y B n2n?

dy? 1.2
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = Cy cosh % + C1p sinh %

Take a derivative of it. .- - -
Y/(y) = T (09 sinh Ty + C'1p cosh Ty)
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Use the boundary condition to determine one of the constants.

nmH nmH

i nmH
sinh o
+ C1p cosh

nmH
cosh o

Y/(H) = HT?/T <Cg sinh > =0 — ClO = —Cg

So then

Y (y) = Cy cosh % + C1psinh %

nmwy sinh # L Ty

= Cg cosh T — Cg cosh n7£H sinh 7

C H H
= o ?WEH <cosh m; cosh nzy — sinh m; sinh mgy)

C. H — H —
= L ?’LTI’H cosh nﬂ-( i3 y) — Yn(y) = cosh nﬂ-(Ly)

cosh 222
L

According to the principle of superposition, the general solution to the PDE for u is a linear
combination of X (x)Y (y) over all the eigenvalues.

o H o
u(z,y) = Ao + Z Ay, cos nza? cosh nr T y)

n=1

Use the final inhomogeneous boundary condition u(z,0) = f(x) to determine Ay and A,,.

nmH nmwT

u(z,0) = Ag + iAn cosh 7S = f(z) (3)

n=1

To find Ay, integrate both sides of equation (3) with respect to  from 0 to L.

L o0 L
/0 (Ao + Z A,, cosh m;H cos T) dx = /0 f(z)dx

n=1

Split up the integral on the left and bring the constants in front. Also, write out the integral on
the right.

L o0 L L/2 L
nmH nwT
AO/ dx + E A, cosh / cosdm:/ 1)dx+/ 0) dz
0 o " L Jo L 0 ( L/2(>
—_—
=0

So then

To find A,,, multiply both sides of equation (3) by cos(mma/L), where m is an integer,

o¢]
H
Ay cos m;r:): + Z Ay, cosh m; cos n;x cos m;r:v = f(x) cos mr

n=1
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and then integrate both sides with respect to = from 0 to L.

L o0 L
mmx ntH nwx mmx m
Ap cos + E A,, cosh cos cos dr = / ) cos
/0 ( 0 —~ " L L L ) 0 f(@)

Split up the integral on the left and bring the constants in front. Also, write out the integral on
the right.

mrH nwx mnx
COS —— COS
L

L2 L
= / (1) cos T g + / (0) cos T g
. L L

L/2

dx

d:E + Z A,, cosh

Ag / cos
0
%,_/

=0

Since the cosine functions are orthogonal, the second integral on the left is zero if n = m. As a
result, every term in the infinite series vanishes except for the n = m one.

H /L L
A,, cosh nr — | = —sin nr
2 nmw 2
So then
A, = 2 sin el
" nnmcosh # 2
and -
2 . nT nux nm(H —y)
u(x,y) = -+ ————— sin — cos cosh .
(z.9) 2 nz:l nm cosh # 2 L L

Notice that the summand is zero if n is even. The solution can thus be simplified (that is, made
to converge faster) by summing over the odd integers only. Make the substitution n = 2p — 1 in
the sum.

1, 2 2p — 1 2 —1 2p — 1)m(H —
u(z,y) =5+ Z g7 Sin (@p— Lm cos (2p = Dz cosh (2p = Im( v)
2 5L, (2p— )mcosh M 2 L L
R 2 o2p—1 2p — 1)m(H —
) +Z e (~ L] cos 22 7 7T cosh {22 )Z( v)
=1 (2p — 1)m cosh ==
Therefore,
2 & (=1 2p—Vrz . (2p—D)w(H —y)
u(z, 5 - Z 21 @ TymE 8 7 cosh 7 .
p:1 p — 1) cosh T
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Part (h)

Because Laplace’s equation and all but one of the boundary conditions are linear and
homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X(x)Y (y) and substitute it into the PDE

0%u  0%u B 0? 0?

e + 5P = 0 — w[X(x)Y(y)] + @[X(x)y(y)] =0

and the homogeneous boundary conditions.

u(0,y) =0 — X(0)Y(y)=0 — X(0)=0
u(z,0) =0 — X(x)Y(0)=0 — Y(0)=0
u(z,H) =0 — X(x)Y(H)=0 — Y(H)=0
Separate variables in the PDE.
d?X d*Y
Y—+X—=0
dz? + dy?
Divide both sides by X (z)Y (y).
1d?°X  1dY 0

X da? + Y dy?
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

1d°X  1d%Y
X dz?2 Y dy?
——

function of ¢ fynction of y
The only way a function of x can be equal to a function of y is if both are equal to a constant .
1d°X  1d%Y
X dz2 Y dy?
As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in z and one in y.

1 d®2X
X da? =A
1 d%y
2 — A
Y dy?

Values of A\ for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for Y first since
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there are two boundary conditions for it. Suppose first that X is positive: A = 2. The ODE for Y
becomes

V" = —a?Y.

The general solution is written in terms of sine and cosine.
Y (y) = Ci cosay + Cosinay

Apply the boundary conditions to determine C and Cos.

Y(H) = CicosaH + CysinaH =0

The second equation reduces to CysinaH = 0. To avoid getting the trivial solution, we insist
that Cy # 0. Then

sinaH =0
aoH=nm, n=1,2,...
nmw

There are positive eigenvalues A = n?72/H?, and the eigenfunctions associated with them are

Y (y) = Cicosay + Coysinay

= Cysinay — Yn(y):sinn—;?.

With this formula for A, the ODE for X becomes

B2X 2.9
@A _ Ty
dx? H?

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
X (z) = Cscosh % + Cysinh %
Apply the boundary condition to determine one of the constants.
X(0)=C5=0
So then
X (x) = Cysinh % —  Xp(z) =sinh n—;?
Suppose secondly that A is zero: A = 0. The ODE for Y becomes
Y/I — O
Integrate both sides with respect to y twice.

Y(y) = Csy + Cs
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Apply the boundary conditions to determine Cs and Cj.

Y(0)=Cs=0
The second equation reduces to CsH = 0, which means C5 = 0. The trivial solution Y (y) = 0 is
obtained, so zero is not an eigenvalue. Suppose thirdly that A is negative: A = —32. The ODE for

Y becomes
Y// — ﬁZY

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
Y (y) = Cr cosh By + Cgsinh By
Apply the boundary conditions to determine C7 and Cs.
Y(0)=C7;=0
Y(H) = C7cosh fH + Cgsinh fH =0

The second equation reduces to Cs sinh BH = (0. No nonzero value of 8 can satisfy this equation,
so Cg must be zero. The trivial solution Y (y) = 0 is obtained, which means there are no negative
eigenvalues. According to the principle of superposition, the general solution to the PDE for u is
a linear combination of X (z)Y (y) over all the eigenvalues.

o0
z,y) = Zaninhn—:fxsin%
n=1

Use the remaining inhomogeneous boundary condition u(L,y) = g(y) to determine B,,.

> .. nwl | nmy
u(L,y) = Z B,, sinh g St = 9(y)
n=1

Multiply both sides by sin(mmy/H), where m is an integer,

iB inhmTL in Y i 1Y (y) in 7Y
n SHR T S T ST = SIS Ty

and then integrate both sides with respect to y from 0 to H.
H H
L
/0 Z B,, sinh n;} sin n;—TIy sin mHﬂy dy = /0 g(y) sin m;y dy
n=1
Bring the constants in front of the integral on the left.

oo H
Z B, sinh 2~ / sin Y gin 1TY dy = / g(y) sin mry dy
= H 0 H

Because the sine functions are orthogonal, the integral on the left is zero if n # m. As a result,
every term in the infinite series vanishes except for the n = m one.

H
B, smh/ sin? 7Y dy—/ 9(y) smﬂdy
0

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.5 - Exercise 2.5.1 Page 35 of 35

L(H H
B, smh% (2) :/0 9(y) sin%dy

So then

B, = sm —= d
H sinh 7 "”L / v
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