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Exercise 2.5.14

Show that the “backward” heat equation

∂u

∂t
= −k∂

2u

∂x2
,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f(x), is not well-posed. [Hint: Show that if the data
are changed an arbitrarily small amount, for example,

f(x)→ f(x) +
1

n
sin

nπx

L

for large n, then the solution u(x, t) changes by a large amount.]

Solution

The backward heat equation and the boundary conditions are linear and homogeneous, so the
method of separation of variables will be applied to solve it. Assume a product solution of the
form u(x, t) = X(x)T (t) and plug it into the PDE

∂u

∂t
= −k∂

2u

∂x2
→ ∂

∂t
[X(x)T (t)] = −k ∂

2

∂x2
[X(x)T (t)] → XT ′ = −kX ′′T

and the boundary conditions.

u(0, t) = 0 → X(0)T (t) = 0 → X(0) = 0

u(L, t) = 0 → X(L)T (t) = 0 → X(L) = 0

Divide both sides of the PDE by kX(x)T (t) to separate variables.

T ′

kT
= −X

′′

X

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

T ′

kT
= −X

′′

X
= λ

As a result of separating variables, the PDE has reduced to two ODEs—one in each independent
variable.

T ′

kT
= λ

−X
′′

X
= λ


Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions
exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Solve the
ODE for X.

X ′′ = −λX

Check for positive eigenvalues: λ = µ2.

X ′′ = −µ2X
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The general solution can be written in terms of sine and cosine.

X(x) = C1 cosµx+ C2 sinµx

Apply the boundary conditions to determine C1 and C2.

X(0) = C1 = 0

X(L) = C1 cosµL+ C2 sinµL = 0

This first equation makes the second one reduce to C2 sinµL = 0. In order to avoid getting the
trivial solution, we insist that C2 6= 0.

sinµL = 0

µL = nπ, n = 1, 2, . . .

µ =
nπ

L

There are positive eigenvalues λ =
(
nπ
L

)2
, and the eigenfunctions associated with them are

X(x) = C2 sinµx → Xn(x) = sin
nπx

L
.

Note that only positive values of n are considered because n = 0 leads to the zero eigenvalue, and
negative integers lead to redundant values of λ. With λ = n2π2

L2 , solve the ODE for T now.

T ′

kT
=
n2π2

L2

The general solution is an exponential function.

T (t) = B exp

(
k
n2π2

L2
t

)
Check to see if zero is an eigenvalue: λ = 0.

X ′′ = 0

The general solution is a straight line.

X(x) = C3x+ C4

Apply the boundary conditions to determine C3 and C4.

X(0) = C4 = 0

X(L) = C3L+ C4 = 0

The first equation makes the second one reduce to C3L = 0, which means C3 = 0.

X(x) = 0

The trivial solution is obtained, so zero is not an eigenvalue. Check to see if there are negative
eigenvalues: λ = −γ2.

X ′′ = γ2X
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The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C5 cosh γx+ C6 sinh γx

Apply the boundary conditions to determine C5 and C6.

X(0) = C5 = 0

X(L) = C5 cosh γL+ C6 sinh γL = 0

The first equation makes the second one reduce to C6 sinh γL = 0. No nonzero value of γ can
satisfy this equation, so C6 = 0.

X(x) = 0

The trivial solution is obtained, so there are no negative eigenvalues. According to the principle
of superposition, the general solution to the PDE is a linear combination of the eigenfunctions
u = Xn(x)Tn(t) over all the eigenvalues.

u(x, t) =

∞∑
n=1

Bn exp

(
k
n2π2

L2
t

)
sin

nπx

L

Use the final boundary condition to determine the constants Bn.

u(x, 0) =

∞∑
n=1

Bn sin
nπx

L
= f(x)

Multiply both sides by sin pπx
L , where p is an integer.

∞∑
n=1

Bn sin
nπx

L
sin

pπx

L
= f(x) sin

pπx

L

Integrate both sides with respect to x from 0 to L.

ˆ L

0

( ∞∑
n=1

Bn sin
nπx

L
sin

pπx

L

)
dx =

ˆ L

0
f(x) sin

pπx

L
dx

Split up the integral on the left and bring the constants in front.

∞∑
n=1

Bn

ˆ L

0
sin

nπx

L
sin

pπx

L
dx =

ˆ L

0
f(x) sin

pπx

L
dx

Because the sine functions are orthogonal, the integral on the left is zero if n 6= p. Only if n = p
does this integral yield a nonzero result.

Bn

ˆ L

0
sin2

nπx

L
dx =

ˆ L

0
f(x) sin

nπx

L
dx

Evaluate the integral.

Bn

(
L

2

)
=

ˆ L

0
f(x) sin

nπx

L
dx
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Therefore,

Bn =
2

L

ˆ L

0
f(x) sin

nπx

L
dx.

Even though a solution was obtained to the backward heat equation with the method of
separation of variables, there is a problem: It lacks stability. After a very long time τ , the
exponential function makes the solution u astronomical in size. The boundary condition
u(0, t) = 0 remains satisfied for all time, so u(0, τ) = 0. Moving just a little bit to the right, for
example, u(0.01, τ) results in a sudden jump in the value of u. In other words, a small change in
(x, t) does not result in a similarly small change in u. The problem is not well-posed.
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