Exercise 2

Consider the problem
\[u''(x) + u'(x) = f(x) \]
\[u'(0) = u(0) = \frac{1}{2}[u'(l) + u(l)] , \]
with \(f(x) \) a given function.

(a) Is the solution unique? Explain.

(b) Does a solution necessarily exist, or is there a condition that \(f(x) \) must satisfy for existence? Explain.

Solution

Part (a)

Suppose there are two solutions to this boundary value problem, \(u_1 \) and \(u_2 \). Then they both satisfy the ODE.

\[u''_1(x) + u'_1(x) = f(x) \]
\[u''_2(x) + u'_2(x) = f(x) \]

If there is a unique solution to the problem, then \(u_1 \) and \(u_2 \) must be equal. Subtract the second equation from the first.

\[u''_1 - u''_2 + u'_1 - u'_2 = 0 \]
\[(u_1 - u_2)'' + (u_1 - u_2)' = 0 \]

Make the substitution, \(w = u_1 - u_2 \).

\[w'' + w' = 0 \]

This is a linear ODE with constant coefficients, so the solution will be of the form, \(w = e^{rx} \).

\[w = e^{rx} \quad \rightarrow \quad \frac{dw}{dx} = re^{rx} \quad \rightarrow \quad \frac{d^2w}{dx^2} = r^2e^{rx} \]

Substituting these expressions into the equation gives us

\[r^2e^{rx} + re^{rx} = 0. \]

Dividing both sides by \(e^{rx} \) yields a polynomial in \(r \) that we can solve.

\[r^2 + r = 0 \]
\[r(r + 1) = 0 \]
\[r = \{-1, 0\} \]

Thus,

\[w(x) = Ae^{-x} + B. \]

Because \(w = u_1 - u_2 \neq 0 \), the solution to the ODE is not unique.
Part (b)

Start off by integrating both sides of the ODE from 0 to l.

$$u'' + u' = f$$

$$\int_{0}^{l} (u'' + u') \, dx = \int_{0}^{l} f(x) \, dx$$

$$\int_{0}^{l} u'' \, dx + \int_{0}^{l} u' \, dx = \int_{0}^{l} f(x) \, dx$$

$$u'|_{0}^{l} + u|_{0}^{l} = \int_{0}^{l} f(x) \, dx$$

$$u'(l) - u'(0) + u(l) - u(0) = \int_{0}^{l} f(x) \, dx$$

The boundary conditions are

$$u(0) = u'(0) = \frac{1}{2} [u'(l) + u(l)],$$

so if we plug these in to the left side of the equation, we get

$$u'(l) - \frac{1}{2} [u'(l) + u(l)] + u(l) - \frac{1}{2} [u'(l) + u(l)] = \int_{0}^{l} f(x) \, dx$$

$$y'(l) - y'(0) + \hat{u}(l) - \hat{u}(0) = \int_{0}^{l} f(x) \, dx.$$

Therefore, in order for a solution to exist, $f(x)$ must satisfy the following condition.

$$\int_{0}^{l} f(x) \, dx = 0$$

That is, the average of f over the length must be 0 for the solution to exist.