Exercise 5

Consider the equation
\[u_x + yu_y = 0 \]
with the boundary condition \(u(x, 0) = \phi(x) \).

(a) For \(\phi(x) \equiv x \), show that no solution exists.

(b) For \(\phi(x) \equiv 1 \), show that there are many solutions.

Solution

On the paths defined by
\[\frac{dy}{dx} = y, \] \hspace{1cm} (1)
the PDE reduces to an ODE,
\[\frac{du}{dx} = 0. \] \hspace{1cm} (2)
That is, \(u = u(x, y) \) is constant on the characteristics defined by (1). Integrating (2), we find that
\[u(x, \xi) = f(\xi), \]
where \(f \) is an arbitrary function of the characteristic coordinate, \(\xi \). Solving (1) by separation of variables gives
\[\frac{dy}{y} = dx \]
\[\ln |y| = x + C \]
\[|y| = e^{x+C} \]
\[y = \pm e^C e^x \]
\[y = \xi e^x. \]
Solving for \(\xi \) gives
\[\xi = ye^{-x}. \]
Therefore,
\[u(x, y) = f (ye^{-x}) . \]
We can check that this is the solution of the PDE.
\[u_x = -ye^{-x} f' \]
\[u_y = e^{-x} f' \]
\[u_x + yu_y = 0, \]
so this is the correct solution. Shown below in Figure 1 are the characteristic curves in the \(xy \)-plane for various values of \(\xi \) along with the line \(y = 0 \) (where the boundary condition is defined). Note that because the data curve, \(y = 0 \), only intersects the \(\xi = 0 \) characteristic, the solution is only defined for \(y = 0 \) and all \(x \).
Figure 1: Plot of the characteristic curves and the data curve for $-5 < x < 5$ and $-5 < y < 5$.

Part (a)

The boundary condition is $\phi(x) = x$ when $y = 0$, so

$$u(x, 0) = f(0) = x.$$

$u = x$ doesn’t satisfy the PDE. Unfortunately, a solution cannot be determined from this boundary condition.

Part (b)

The boundary condition is $\phi(x) = 1$ when $y = 0$, so

$$u(x, 0) = f(0) = 1.$$

$u = 1$ does satisfy the PDE. From this, all we can say about u is that

$$u(x, y) = \begin{cases}
1 & \text{when } y = 0 \\
 f \left(ye^{-x} \right) & \text{all other } x \text{ and } y.
\end{cases}$$

Therefore, the solution is not unique.