Exercise 2

For a solution $u(x,t)$ of the wave equation with $\rho = T = c = 1$, the energy density is defined as $e = \frac{1}{2}(u_t^2 + u_x^2)$ and the momentum density as $p = u_t u_x$.

(a) Show that $\partial e / \partial t = \partial p / \partial x$ and $\partial p / \partial t = \partial e / \partial x$.

(b) Show that both $e(x, t)$ and $p(x, t)$ also satisfy the wave equation.

Solution

Part (a)

The fact that $u(x, t)$ is a solution of the wave equation implies that $u_{tt} = u_{xx}$. From the definitions we have

\[
\begin{cases}
 e = \frac{1}{2}(u_t^2 + u_x^2) \\
 p = u_t u_x
\end{cases}
\]

Taking the derivative of e with respect to t and the derivative of p with respect to x, we obtain

\[
\begin{cases}
 \frac{\partial e}{\partial t} = \frac{1}{2} \left[\frac{\partial}{\partial t} (u_t^2) + \frac{\partial}{\partial t} (u_x^2) \right] = \frac{1}{2} (2u_t u_{tt} + 2u_x u_{xt}) \\
 \frac{\partial p}{\partial x} = \frac{\partial}{\partial x} (u_t u_x) = u_{tx} u_x + u_t u_{xx}
\end{cases}
\]

We can substitute u_{tt} for u_{xx} in the top equation and replace u_{tx} with u_{xt} in the bottom equation.

\[
\begin{cases}
 \frac{\partial e}{\partial t} = u_t u_{xx} + u_{tx} u_x \\
 \frac{\partial p}{\partial x} = u_{xt} u_x + u_t u_{xx}
\end{cases}
\]

Therefore, $\frac{\partial e}{\partial t} = \frac{\partial p}{\partial x}$.

Taking the derivative of e with respect to x and the derivative of p with respect to t, we obtain

\[
\begin{cases}
 \frac{\partial e}{\partial x} = \frac{1}{2} \left[\frac{\partial}{\partial x} (u_t^2) + \frac{\partial}{\partial x} (u_x^2) \right] = \frac{1}{2} (2u_t u_{tx} + 2u_x u_{xx}) \\
 \frac{\partial p}{\partial t} = \frac{\partial}{\partial t} (u_t u_x) = u_{tt} u_x + u_t u_{xt}
\end{cases}
\]

We can substitute u_{xx} for u_{tt} and u_{tx} for u_{xt} in the top equation.

\[
\begin{cases}
 \frac{\partial e}{\partial x} = u_t u_{xt} + u_x u_{tt} \\
 \frac{\partial p}{\partial t} = u_{xt} u_x + u_t u_{xx}
\end{cases}
\]

Therefore, $\frac{\partial e}{\partial x} = \frac{\partial p}{\partial t}$.
Part (b)

We established in part (a) that \(p_t = e_x \) and \(p_x = e_t \). That is,

\[
\begin{aligned}
\begin{cases}
 p_t &= e_x \\
 p_x &= e_t
\end{cases}
\end{aligned}
\]

Taking the derivative with respect to \(t \) on both sides of the top and the derivative with respect to \(x \) on both sides of the bottom yields

\[
\begin{aligned}
\begin{cases}
 p_{tt} &= e_{xt} \\
 p_{xx} &= e_{tx}
\end{cases}
\end{aligned}
\]

And since \(e_{xt} = e_{tx} \), it means that \(p_{tt} = p_{xx} \). On the other hand, taking the derivative with respect to \(x \) on both sides of the top and the derivative with respect to \(t \) on both sides of the bottom yields

\[
\begin{aligned}
\begin{cases}
 p_{tx} &= e_{xx} \\
 p_{xt} &= e_{tt}
\end{cases}
\end{aligned}
\]

And since \(p_{tx} = p_{xt} \), it means that \(e_{tt} = e_{xx} \). Therefore, \(p(x,t) \) and \(e(x,t) \) satisfy the wave equation.