Exercise 3

Consider the diffusion equation \(u_t = u_{xx} \) in the interval \((0,1)\) with \(u(0, t) = u(1, t) = 0 \) and \(u(x, 0) = 1 - x^2 \). Note that this initial function does not satisfy the boundary condition at the left end, but that the solution will satisfy it for all \(t > 0 \).

(a) Show that \(u(x, t) > 0 \) at all interior points \(0 < x < 1, \ 0 < t < \infty \).

(b) For each \(t > 0 \), let \(\mu(t) = \) the maximum of \(u(x, t) \) over \(0 \leq x \leq 1 \). Show that \(\mu(t) \) is a decreasing (i.e. nonincreasing) function of \(t \). (Hint: Let the maximum occur at the point \(X(t) \), so that \(\mu(t) = u(X(t), t) \). Differentiate \(\mu(t) \), assuming that \(X(t) \) is differentiable.)

(c) Draw a rough sketch of what you think the solution looks like \((u \text{ versus } x)\) at a few times. (If you have appropriate software available, compute it.)

Solution

Part (a)

According to the minimum principle, the lowest value of \(u \) can only occur initially or on the boundary. Since \(u(x, 0) = 1 - x^2 \) and \(0 < x < 1, \ u > 0 \) initially, On the boundary, \(u(0, t) = u(1, t) = 0, \) so \(u = 0 \) is the minimum value. Therefore, by the minimum principle, \(u > 0 \) at all interior points \((0 < x < 1)\) for \(0 < t < \infty \).

Part (b)

The goal here is to show that the maximum of \(u, \mu(t) \), is a decreasing function of time, that is,

\[
\frac{d\mu}{dt} < 0
\]

for each \(t > 0 \). Following the hint, suppose the maximum occurs at the \(x \)-coordinate, \(X(t) \).

\[
\mu(t) = u(x = X(t), t)
\]

Take the derivative of \(\mu \) with respect to \(t \), using the chain rule since both arguments are functions of \(t \).

\[
\frac{d\mu}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial t} \frac{dt}{dt} = u_x(X(t), t) \frac{dX}{dt} + u_t(X(t), t)
\]

Use the fact that \(u_t = u_{xx} \).

\[
\frac{d\mu}{dt} = u_x(X(t), t) \frac{dX}{dt} + u_{xx}(X(t), t)
\]

At the maximum the slope of \(u \) is zero and the concavity is downward, so \(u_x(X(t), t) = 0 \) and \(u_{xx}(X(t), t) < 0 \). Therefore,

\[
\frac{d\mu}{dt} < 0,
\]

which means \(\mu(t) \) is a decreasing function of \(t \).

\[^1\text{Special thanks to L. Baker for the correction in part (b).}\]

www.stemjock.com
Part (c)

The solution to the diffusion equation that satisfies the given boundary conditions and initial condition is

\[u(x, t) = \sum_{n=1}^{\infty} A_n e^{-n^2 \pi^2 t} \sin n\pi x, \]

where

\[A_n = \frac{2}{n^3 \pi^3} [2 - 2(-1)^n + n^2 \pi^2]. \]

Shown below are graphs of \(u \) as a function of \(x \) for five different times.

Figure 1: The concentration profile at \(t = 0 \).
Figure 2: The concentration profile at $t = 0.001$.

Figure 3: The concentration profile at $t = 0.01$.

www.stemjock.com
Figure 4: The concentration profile at $t = 0.03$.

Figure 5: The concentration profile at $t = 0.1$.