Exercise 4

Solve the diffusion equation if $\phi(x) = e^{-x}$ for $x > 0$ and $\phi(x) = 0$ for $x < 0$.

Solution

Solution by the Similarity Method

We have to solve the initial value problem,

$$u_t = ku_{xx}, \quad u(x,0) = \phi(x). \tag{1}$$

In order to do so, we’ll solve for the Green’s function $G(x,t)$ in the corresponding PDE,

$$G_t = kG_{xx}, \quad G(x,0) = \delta(x), \tag{2}$$

where $\delta(x)$, the Dirac delta function, is defined as

$$\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}.$$

The reason we’re solving the equation with the delta function is that it has the extremely useful “sifting” property,

$$\int_{-\infty}^{\infty} f(s)\delta(x - s) \, ds = f(x),$$

so the solution to the initial value problem (1) in terms of the Green’s function is

$$u(x,t) = \int_{-\infty}^{\infty} G(x-s,t)\phi(s) \, ds.$$

This can be verified by substituting this form for u into (1). Now we will go about solving (2) for $G(x,t)$ by using the similarity method (also known as the combination of variables method). Because u is a dimensionless quantity (that is, it yields a pure number with no units) the variables x, t, and k have to appear in the solution in a dimensionless combination. x has units of meters, t has units of seconds, and k has units of meters2/second, so the combination of variables has to be

$$\frac{x^2}{kt}$$

or any convenient multiple or power thereof. Therefore,

$$u = u(\eta), \quad \text{where we choose } \eta = \frac{x}{\sqrt{kt}}.$$

We choose this particular form for η so the process of getting the final answer is smoother. We’re trying to solve (2) for G, though, and G is not dimensionless; as can be seen from the initial condition, it has the same dimensions as $\delta(x)$. $\delta(x)$ has the inverse dimension of its argument, so G has dimensions of meters$^{-1}$. Thus, G has to be of the form,

$$G(x,t) = \frac{1}{\sqrt{kt}}g\left(\frac{x}{\sqrt{kt}}\right),$$

www.stemjock.com
where g is an arbitrary function. In order to determine g, we have to plug this form into (2) and solve the resulting ODE. To start, write the expressions for G_t and G_{xx}.

\[
\frac{\partial G}{\partial t} = -\frac{1}{2\sqrt{kt^3}}g + \frac{1}{\sqrt{kt}} \left(-\frac{x}{2\sqrt{kt^3}}\right) g' \\
\frac{\partial G}{\partial x} = \frac{1}{\sqrt{kt}} \cdot \frac{1}{\sqrt{kt}} g' = \frac{1}{kt} g' \\
\frac{\partial^2 G}{\partial x^2} = \frac{1}{kt} \cdot \frac{1}{\sqrt{kt}} g'' = \frac{1}{\sqrt{k^3t^3}} g''
\]

Substituting these expressions into (2) gives

\[
-\frac{1}{2\sqrt{kt^3}}g - \frac{1}{2\sqrt{kt^3}} \cdot \frac{x}{\sqrt{kt}} g' = \frac{1}{\sqrt{kt^3}} g''.
\]

Cancel common terms and move everything to one side.

\[
g'' + \frac{1}{2} \frac{x}{\sqrt{kt}} g' + \frac{1}{2} g = 0
\]

Use the combination variable η.

\[
g'' + \frac{\eta}{2} g' + \frac{1}{2} g = 0
\]

The last two terms on the left side can be written as one using the product rule.

\[
g'' + \left(\frac{\eta}{2} g\right)' = 0
\]

Integrate both sides of the equation.

\[
g' + \frac{\eta}{2} g = C_1
\]

This is an inhomogeneous first-order linear differential equation that can be solved with an integrating factor. The integrating factor is

\[
I = e^{\int \frac{\eta}{2} \, d\eta} = e^{\frac{\eta^2}{4}}.
\]

Multiply both sides by I.

\[
e^{\frac{\eta^2}{4}} g' + \frac{\eta}{2} e^{\frac{\eta^2}{4}} g = C_1 e^{\frac{\eta^2}{4}}
\]

The two terms on the left side can be written as one using the product rule.

\[
\left(e^{\frac{\eta^2}{4}} g\right)' = C_1 e^{\frac{\eta^2}{4}}
\]

Integrate both sides of the equation a second time.

\[
e^{\frac{\eta^2}{4}} g = \int_1^n C_1 e^{\frac{\eta^2}{4}} \, ds + C_2
\]

Hence, the arbitrary function g is

\[
g(\eta) = e^{-\frac{\eta^2}{4}} \left[C_1 \int_1^n e^{\frac{\eta^2}{4}} \, ds + C_2\right],
\]

www.stemjock.com
and consequently, the Green’s function is

\[
G = \frac{1}{\sqrt{kt}} g(\eta) = e^{-\frac{x^2}{4kt}} \left[C_1 \int_0^\eta e^{\frac{s^2}{4kt}} \, ds + C_2 \right].
\] \tag{3}

The next order of business is to determine the constants of integration, \(C_1\) and \(C_2\). We need to return to the diffusion equation and the initial condition in (2) to figure these out.

\[
G_t = kG_{xx}
\]

Integrate both sides of the equation with respect to \(x\) over the whole line.

\[
\int_{-\infty}^\infty G_t \, dx = \int_{-\infty}^\infty kG_{xx} \, dx
\]

Take out the time derivative from the left side and evaluate the right side.

\[
\frac{d}{dt} \int_{-\infty}^\infty G \, dx = kG_x \bigg|_{-\infty}^\infty
\]

We assume that \(G\) and \(G_x\) tend to 0 as \(x \to \pm \infty\), so we have

\[
\frac{d}{dt} \int_{-\infty}^\infty G \, dx = 0.
\]

This implies that the quantity,

\[
\int_{-\infty}^\infty G \, dx,
\]

remains constant for all time. Initially \(G(x, 0) = \delta(x)\), so

\[
\int_{-\infty}^\infty G(x, t) \, dx = \int_{-\infty}^\infty G(x, 0) \, dx = \int_{-\infty}^\infty \delta(x) \, dx = 1.
\] \tag{4}

In order for this integral to converge, \(C_1\) has to be 0. In terms of \(x\) and \(t\), (3) becomes

\[
G(x, t) = \frac{C_2}{\sqrt{kt}} e^{-\frac{x^2}{4kt}}.
\]

\(C_2\) can be thought of as a normalization constant that we determine by plugging into (4).

\[
\int_{-\infty}^\infty G(x, t) \, dx = \int_{-\infty}^\infty \frac{C_2}{\sqrt{kt}} e^{-\frac{x^2}{4kt}} \, dx = 1
\]

Make the following substitution to solve the integral.

\[
v = \frac{x}{\sqrt{4kt}}
\]

\[
dv = \frac{dx}{\sqrt{4kt}} \quad \rightarrow \quad 2dv = \frac{dx}{\sqrt{kt}}
\]

The integral becomes

\[
2C_2 \int_{-\infty}^\infty e^{-v^2} \, dv = 1,
\]

www.stemjock.com
and it evaluates to \(\sqrt{\pi} \).

\[
2C_2 \sqrt{\pi} = 1
\]

Solving for \(C_2 \) yields

\[
C_2 = \frac{1}{\sqrt{4\pi}}.
\]

Therefore, the Green’s function is

\[
G(x, t) = \frac{1}{\sqrt{4\pi kt}} e^{-\frac{x^2}{4kt}},
\]

and the solution to the initial value problem in (1) is

\[
u(x, t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi kt}} e^{-\frac{(x-s)^2}{4kt}} \phi(s) \, ds.
\]

(5)

\(u(x, t) \) can be interpreted as the convolution of the initial condition with a Gaussian filter. At every point \(x \), \(u(x, t) \) is an averaged, or smoothed, version of the initial condition over an interval of width \(\sqrt{kt} \). As \(t \) increases, the range of the filter grows and \(u(x, t) \) becomes increasingly smooth over \(x \). Any discontinuities or kinks that are present in the initial condition are smoothed out. In this exercise, the initial condition is

\[
\phi(x) = \begin{cases}
 e^{-x} & x > 0 \\
 0 & x < 0
\end{cases}.
\]

If we substitute this into the formula in (5), then we get

\[
u(x, t) = \int_{0}^{\infty} \frac{1}{\sqrt{4\pi kt}} e^{-\frac{(x-s)^2}{4kt}} e^{-s} \, ds.
\]

Combine the exponentials into one.

\[
u(x, t) = \int_{0}^{\infty} \frac{1}{\sqrt{4\pi kt}} e^{-\frac{(x-s)^2}{4kt} - s} \, ds.
\]

The exponent \(E \) becomes the following.

\[
E = -\frac{(x-s)^2}{4kt} - s
\]

\[
= \frac{-x^2 - 2xs - s^2 - 4ks}{4kt}
\]

\[
= \frac{-x^2 - s^2 + (2x - 4kt)s - (x - 2kt)^2 + (x - 2kt)^2}{4kt}
\]

\[
= \frac{-s^2 + 2(x - 2kt)s - (x - 2kt)^2 - x^2 + (x - 2kt)^2}{4kt}
\]

\[
= \frac{-[s - (x - 2kt)]^2 - x^2 + 4ktx + 4k^2t^2}{4kt}
\]

\[
= \frac{4kt(kt - x) - (s - x + 2kt)^2}{4kt}
\]

\[
= kt - x - \frac{(s - x + 2kt)^2}{4kt}
\]
So we have for \(u(x,t) \):
\[
u(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{kt-x} \int_{0}^{\infty} e^{-\frac{(s-x+2kt)^2}{4kt}} ds.
\]

Make the following substitution to solve the integral.
\[
p = \frac{s-x+2kt}{\sqrt{4kt}} \quad \rightarrow \quad p^2 = \frac{(s-x+2kt)^2}{4kt}
\]
\[
dp = \frac{ds}{\sqrt{4kt}}
\]

The integral becomes
\[
u(x,t) = \frac{1}{\sqrt{\pi}} e^{kt-x} \int_{-\frac{s-x+2kt}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp.
\]

Split up the integral into two to get desired limits of integration.
\[
u(x,t) = \frac{1}{\sqrt{\pi}} e^{kt-x} \left(\int_{0}^{\infty} e^{-p^2} dp + \int_{0}^{\infty} e^{-p^2} dp \right)
\]

Switch the limits on the first integral and add a minus sign.
\[
u(x,t) = \frac{1}{\sqrt{\pi}} e^{kt-x} \left(- \int_{0}^{\infty} e^{-p^2} dp + \int_{0}^{\infty} e^{-p^2} dp \right)
\]

The error function, \(\text{erf} z \), is defined as
\[
\text{erf} z = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-p^2} dp,
\]
so we can write the first integral in terms of it. Also, the second integral can be evaluated to \(\sqrt{\pi}/2 \).
\[
u(x,t) = \frac{1}{\sqrt{\pi}} e^{kt-x} \left[- \frac{\sqrt{\pi}}{2} \text{erf} \left(-\frac{x+2kt}{\sqrt{4kt}} \right) + \frac{\sqrt{\pi}}{2} \right]
\]

Therefore,
\[
u(x,t) = \frac{1}{2} e^{kt-x} \left[1 - \text{erf} \left(-\frac{x+2kt}{\sqrt{4kt}} \right) \right].
\]
Figure 1: Plot of the solution $u(x, t)$ with $k = 1 \text{ m}^2/\text{s}$ for six different times: $t = 0 \text{ s}$ (red), $t = 0.1 \text{ s}$ (orange), $t = 0.3 \text{ s}$ (yellow), $t = 1 \text{ s}$ (green), $t = 3 \text{ s}$ (blue), and $t = 10 \text{ s}$ (purple).