Exercise 2

Consider a traveling wave \(u(x, t) = f(x - at) \) where \(f \) is a given function of one variable.

(a) If it is a solution of the wave equation, show that the speed must be \(a \pm c \) (unless \(f \) is a linear function).

(b) If it is a solution of the diffusion equation, find \(f \) and show that the speed \(a \) is arbitrary.

Solution

Part (a)

If \(u(x, t) = f(x - at) \) is a solution to the wave equation, then it has to satisfy \(u_{tt} = c^2 u_{xx} \).

\[
\begin{align*}
 u_t &= (-a) \cdot f' \\
 u_{tt} &= a^2 \cdot f'' \\
 u_x &= f' \\
 u_{xx} &= f''
\end{align*}
\]

Substituting these expressions for the terms in the PDE yields

\[
a^2 f'' = c^2 f''.
\]

This implies that

\[
a^2 = c^2
\]

or

\[
a = \pm c.
\]

If \(f(x - at) \) is linear, then \(f'' = 0 \) and \(a^2 \) need not equal \(c^2 \).

Part (b)

If \(u(x, t) = f(x - at) \) is a solution to the diffusion equation, then it has to satisfy \(u_t = ku_{xx} \).

\[
\begin{align*}
 u_t &= (-a) \cdot f' \\
 u_x &= f' \\
 u_{xx} &= f''
\end{align*}
\]

Substituting these expressions for the terms in the PDE yields

\[-af' = kf''.
\]

Rewrite this as

\[-\frac{a}{k} = \frac{f''}{f'} = \frac{d\ln f'}{d\xi},
\]

where \(\xi = x - at \). Integrate both sides once with respect to \(\xi \).

\[-\frac{a}{k} \xi + C = \ln f'
\]

www.stemjock.com
Exponentiate both sides.
\[e^{-\frac{a}{k} \xi} + C = f' \]

Introduce a new constant of integration \(C_1 = e^C \).
\[C_1 e^{-\frac{a}{k} \xi} = f' \]

Integrate both sides with respect to \(\xi \) a second time.
\[f(\xi) = C_3 e^{-\frac{a}{k} \xi} + C_2, \]

where \(C_2 \) and \(C_3 = -kC_1/a \) are other arbitrary constants. Now change back to the original variables, \(x \) and \(t \).
\[f(x - at) = C_3 e^{-\frac{a}{k}(x - at)} + C_2 \tag{1} \]

We can check that this satisfies the diffusion equation.
\[
\begin{align*}
 u_t &= C_3 e^{-\frac{a}{k}(x - at)} \cdot \left(\frac{a^2}{k} \right) \\
 u_x &= C_3 e^{-\frac{a}{k}(x - at)} \cdot \left(-\frac{a}{k} \right) \\
 u_{xx} &= C_3 e^{-\frac{a}{k}(x - at)} \cdot \left(\frac{a^2}{k^2} \right)
\end{align*}
\]

Therefore, \(u_t = ku_{xx} \), which means (1) is the correct solution for \(f \). Note that there are no restrictions on \(a \); that is, it is arbitrary.