Exercise 8

Consider again Robin BCs at both ends for arbitrary a_0 and a_l .

- (a) In the a_0a_l plane sketch the hyperbola $a_0 + a_l = -a_0a_ll$. Indicate the asymptotes. For (a_0, a_l) on this hyperbola, zero is an eigenvalue, according to Exercise 2(a).
- (b) Show that the hyperbola separates the whole plane into three regions, depending on whether there are two, one, or no negative eigenvalues.
- (c) Label the directions of increasing absorption and radiation on each axis. Label the point corresponding to Neumann BCs.
- (d) Where in the plane do the Dirichlet BCs belong?

Solution

Part (a)

In order to sketch the hyperbola, solve the given equation for a_l .

$$a_0 + a_l = -a_0 a_l l$$

$$a_l + a_0 a_l l = -a_0$$

$$a_l (1 + a_0 l) = -a_0$$

$$a_l = -\frac{a_0}{1 + a_0 l}$$

There is a vertical asymptote where the denominator is equal to 0.

Vertical Asymptote:
$$1 + a_0 l = 0 \rightarrow a_0 = -\frac{1}{l}$$

Also, there is a horizontal asymptote.

Horizontal Asymptote :
$$\lim_{a_0 \to \pm \infty} a_l = \lim_{a_0 \to \pm \infty} -\frac{a_0}{1 + a_0 l}$$
$$= \lim_{a_0 \to \pm \infty} -\frac{1}{\frac{1}{a_0} + l}$$
$$= -\frac{1}{l}$$

Figure 1: This is a plot of the hyperbola $a_0 + a_l = -a_0 a_l l$ in the $a_0 a_l$ -plane. The vertical (blue) and horizontal (green) asymptotes are included as well.

Part (b)

The eigenvalue problem under consideration is

$$-X'' = \lambda X$$

subject to the Robin boundary conditions,

$$X'(0) - a_0 X(0) = 0$$

$$X'(l) + a_l X(l) = 0.$$

If we want to find the negative eigenvalues, then we set $\lambda = -\gamma^2$. Solving the differential equation and applying the boundary conditions yields an equation for γ . This is equation (16) in the textbook.

$$\tanh \gamma l = -\frac{(a_0 + a_l)\gamma}{\gamma^2 + a_0 a_l}.$$
(16)

Intersections of the graphs of $y = \tanh \gamma l$ and $y = -[(a_0 + a_l)\gamma]/(\gamma^2 + a_0 a_l)$ give the eigenvalues we're looking for. Since these functions of γ are odd and $\lambda = -\gamma^2$, intersections that occur at negative values of γ yield redundant values of λ . The point is that we only need to consider intersections at positive values of γ . The nature of the rational function changes, depending on what a_0 and a_l are. One by one we will go through each region of the a_0a_l -plane to determine the number of intersections it has with the hyperbolic tangent function.

Figure 2: Choosing any two values for a_0 and a_l in the shaded region of the a_0a_l -plane gives us the two plots on the right. The shaded region is $a_0 > 0$ and $a_l > 0$, which means physically that there is radiation at both boundaries. In blue is a plot of $y = \tanh \gamma l$ and in red is a plot of $y = -[(a_0 + a_l)\gamma]/(\gamma^2 + a_0a_l)$. Since l is positive, there are no intersections and hence no eigenvalues in this region.

Figure 3: Choosing any two values for a_0 and a_l in the shaded region of the a_0a_l -plane gives us the two plots on the right. The shaded region is the union of $a_0 < 0$ and $a_l > 0$ and $a_0 + a_l > -a_0a_ll$ as well as $a_0 > 0$ and $a_l < 0$ and $a_0 + a_l > -a_0a_ll$, which means physically that there is more radiation than absorption at the boundaries. In blue is a plot of $y = \tanh \gamma l$ and in red is a plot of $y = -[(a_0 + a_l)\gamma]/(\gamma^2 + a_0a_l)$. There are no intersections and hence no eigenvalues in this region.

Figure 4: Choosing any two values for a_0 and a_l in the shaded region of the a_0a_l -plane gives us the two plots on the right. The shaded region is the union of $a_0 < 0$ and $a_l > 0$ and $a_0 + a_l < -a_0a_ll$ as well as $a_0 > 0$ and $a_l < 0$ and $a_0 + a_l < -a_0a_ll$, which means physically (usually) that there is more absorption than radiation at the boundaries. In blue is a plot of $y = \tanh \gamma l$ and in red is a plot of $y = -[(a_0 + a_l)\gamma]/(\gamma^2 + a_0a_l)$. There is one intersection and hence one eigenvalue λ_1 in this region.

Figure 5: Choosing any two values for a_0 and a_l in the shaded region of the a_0a_l -plane gives us the two plots on the right. The shaded region is $a_0 < 0$ and $a_l < 0$ and $a_0 + a_l < -a_0a_ll$, which means physically that there is absorption at both boundaries. In blue is a plot of $y = \tanh \gamma l$ and in red is a plot of $y = -[(a_0 + a_l)\gamma]/(\gamma^2 + a_0a_l)$. There is one intersection and hence one eigenvalue λ_1 in this region.

Figure 6: Choosing any two values for a_0 and a_l in the shaded region of the a_0a_l -plane gives us the two plots on the right. The shaded region is $a_0 < 0$ and $a_l < 0$ and $a_0 + a_l > -a_0a_ll$, which means physically that there is absorption at both boundaries. In blue is a plot of $y = \tanh \gamma l$ and in red is a plot of $y = -[(a_0 + a_l)\gamma]/(\gamma^2 + a_0a_l)$. There are two intersections and hence two eigenvalues, λ_1 and λ_2 , in this region.

Therefore, we have the following picture of the a_0a_l -plane.

Figure 7: The hyperbola $a_0 + a_l = -a_0 a_l l$ separates the regions in the $a_0 a_l$ -plane where there are zero, one, and two negative eigenvalues.

Part (c)

Figure 8: To get X'(0) = 0 and X'(l) = 0 in the Robin boundary conditions, we set $a_0 = 0$ and $a_l = 0$. Also, positive a_0 and a_l represent radiation, whereas negative a_0 and a_l represent absorption.

Part (d)

Solve the Robin boundary conditions for X(0) and X(l).

$$X'(0) - a_0 X(0) = 0 \rightarrow X(0) = \frac{X'(0)}{a_0}$$

 $X'(l) + a_l X(l) = 0 \rightarrow X(l) = -\frac{X'(l)}{a_l}$

In order to get X(0) = 0 and X(l) = 0, we require $a_0 \to \pm \infty$ and $a_l \to \pm \infty$. Therefore, the Dirichlet boundary conditions are at the four corners of the a_0a_l -plane.