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Exercise 8

Solve Uyg + Uyy + Uz, = 1 in the spherical shell @ < r < b with w =0 on r = a and Ju/0r = 0 on
r =b. Then let ¢ — 0 in your answer and interpret the result.

Solution

The PDE we have to solve is known as the Poisson equation.
Viu=1

Since the region we’re solving it in is a spherical shell, we will expand the Laplacian operator in
spherical coordinates (6 here represents the angle from the polar axis).
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We assume from the boundary conditions that the solution is spherically symmetric, that is, it
only depends on 7, u = u(r). Consequently, the PDE simplifies to an ODE that can be solved
relatively easily.
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Notice that this is a first-order ODE for du/dr. Multiply both sides by the integrating factor
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The left side can be written as d/dr(Idu/dr) as a result of the product rule.
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Integrate both sides with respect to r.
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Divide both sides by 2.
duv _1r G
dr 3 r2
Apply the boundary condition at » = b now to determine C'.
du b 4 b
The formula for du/dr becomes
du_r_ 0
dr 3 32
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Integrate both sides with respect to r once more.
2 b3

r
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Apply the boundary condition at » = a to determine Cj.
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So then
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Therefore,
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In the limit as a — 0, v — —oco. The Poisson equation we solved is the governing equation for the
steady-state temperature in a spherical shell that has a constant heat source (technically a heat
sink). The boundary condition, u(a) = 0, means the temperature is specfied at the inner radius.
The boundary condition, du/0r(b) = 0, means the sphere is insulated at the outer radius,
implying that no heat can enter or exit here. If @ — 0, then the spherical shell becomes a sphere,
and the boundary condition at r = a is effectively lost. Since no heat can enter the sphere at
r = b, the temperature drops indefinitely due to the heat sink.
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