Exercise 3

Find the harmonic function \(u(x, y) \) in the square \(D = \{0 < x < \pi, \ 0 < y < \pi\} \) with the boundary conditions:

\[
\begin{align*}
 u_y &= 0 \quad \text{for } y = 0 \text{ and for } y = \pi, \\
 u &= 0 \quad \text{for } x = 0 \quad \text{and} \\
 u &= \cos^2 y = \frac{1}{2}(1 + \cos 2y) \quad \text{for } x = \pi.
\end{align*}
\]

Solution

A harmonic function \(u(x, y) \) is a function that satisfies the Laplace equation, so the boundary value problem we have to solve is the following.

\[
\nabla^2 u = 0, \quad 0 < x < \pi, \ 0 < y < \pi
\]

\[
 u_y(x, 0) = 0, \quad u(0, y) = 0
\]

\[
 u_y(x, \pi) = 0, \quad u(\pi, y) = \frac{1}{2}(1 + \cos 2y)
\]

As all but one of the boundary conditions are homogeneous, the method of separation of variables can be applied to solve the PDE.

Method 1 - The Hard Way

Assume a product solution of the form \(u = X(x)Y(y) \) and plug it into the PDE

\[
 u_{xx} + u_{yy} = 0 \quad \rightarrow \quad X''Y + XY'' = 0
\]

and the homogeneous boundary conditions.

\[
\begin{align*}
 u_y(x, 0) &= 0 \quad \rightarrow \quad X(x)Y'(0) = 0 \quad \rightarrow \quad Y'(0) = 0 \\
 u_y(x, \pi) &= 0 \quad \rightarrow \quad X(x)Y'(\pi) = 0 \quad \rightarrow \quad Y'(\pi) = 0 \\
 u(0, y) &= 0 \quad \rightarrow \quad X(0)Y(y) = 0 \quad \rightarrow \quad X(0) = 0
\end{align*}
\]

Now separate variables in the PDE: bring all functions of \(x \) to the left side and all functions of \(y \) to the right side. Note that the final answer will be the same regardless of which side the minus sign is on.

\[
X''Y + XY'' = 0 \quad \rightarrow \quad \frac{X''}{X} = -\frac{Y''}{Y}
\]

The only way that a function of \(x \) can be equal to a function of \(y \) is if both are equal to a constant \(\lambda \).

\[
\frac{X''}{X} = -\frac{Y''}{Y} = \lambda
\]

Values of \(\lambda \) for which the boundary conditions are satisfied are called the eigenvalues, and the nontrivial functions associated with them are called the eigenfunctions.

Determination of Positive Eigenvalues: \(\lambda = \mu^2 \)

If \(\lambda \) is positive, then the ODE for \(Y \) becomes

\[
-\frac{Y''}{Y} = \mu^2.
\]
Multiply both sides by $-Y$.
\[Y'' = -\mu^2 Y \]

The general solution can be written in terms of sine and cosine.
\[Y(y) = C_1 \cos \mu y + C_2 \sin \mu y \]

Take a derivative of it with respect to y.
\[Y'(y) = \mu(-C_1 \sin \mu y + C_2 \cos \mu y) \]

Apply the boundary conditions here to determine C_1 and C_2.
\[
Y'(0) = \mu(C_2) = 0 \\
Y'(\pi) = \mu(-C_1 \sin \mu \pi + C_2 \cos \mu \pi) = 0
\]

Since $C_2 = 0$, the second equation simplifies to
\[-C_1 \mu \sin \mu \pi = 0. \]
To avoid getting the trivial solution, we insist that $C_1 \neq 0$. Then
\[\sin \mu \pi = 0 \rightarrow \mu \pi = n\pi \rightarrow \mu_n = n, \quad n = 1, 2, \ldots. \]

The eigenfunctions associated with these eigenvalues are
\[Y(y) = C_1 \cos \mu y \rightarrow Y_n(y) = \cos ny, \quad n = 1, 2, \ldots. \]

Now the related ODE for X will be solved.
\[\frac{X''}{X} = \mu^2 \]

Multiply both sides by X.
\[X'' = \mu^2 X \]

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.
\[X(x) = C_3 \cosh \mu x + C_4 \sinh \mu x \]

Apply the boundary condition at $x = 0$ here to determine one of the constants.
\[X(0) = C_3 = 0 \]

So then
\[X(x) = C_4 \sinh \mu x \rightarrow X_n(x) = \sinh nx, \quad n = 1, 2, \ldots. \]

Determination of the Zero Eigenvalue: $\lambda = 0$

If λ is zero, then the ODE for Y becomes
\[-\frac{Y''}{Y} = 0. \]

Multiply both sides by $-Y$.
\[Y''(y) = 0 \]

www.stemjock.com
Integrate both sides with respect to \(y \).
\[
Y'(y) = C_5
\]
Apply the boundary conditions here to determine \(C_5 \).
\[
Y'(0) = C_5 = 0 \\
Y'\left(\pi\right) = C_5 = 0
\]
The formula for \(Y'(y) \) reduces to
\[
Y'(y) = 0
\]
Integrate both sides with respect to \(y \) once more.
\[
Y(y) = C_6
\]
Now the related equation for \(X \) will be solved.
\[
\frac{X''}{X} = 0
\]
Multiply both sides by \(X \).
\[
X''(x) = 0
\]
Integrate both sides with respect to \(x \).
\[
X'(x) = C_7
\]
Integrate both sides with respect to \(x \) once more.
\[
X(x) = C_7x + C_8
\]
Apply the boundary condition at \(x = 0 \) to determine one of the constants.
\[
X(0) = C_8 = 0
\]
So then
\[
X(x) = C_7x.
\]
Determination of Negative Eigenvalues: \(\lambda = -\gamma^2 \)

If \(\lambda \) is negative, then the ODE for \(Y \) becomes
\[
-\frac{Y''}{Y} = -\gamma^2.
\]
Multiply both sides by \(-Y\).
\[
Y'' = \gamma^2 Y
\]
The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.
\[
Y(y) = C_9 \cosh \gamma y + C_{10} \sinh \gamma y
\]
Take a derivative of it with respect to \(y \).
\[
Y'(y) = \gamma (C_9 \sinh \gamma y + C_{10} \cosh \gamma y)
\]

www.stemjock.com
Apply the boundary conditions here to determine C_9 and C_{10}.

\[
Y'(0) = \gamma(C_{10}) = 0 \\
Y'(\pi) = \gamma(C_9 \sinh \gamma \pi + C_{10} \cosh \gamma \pi) = 0
\]

Since $C_{10} = 0$, the second equation reduces to $C_9 \gamma \sinh \gamma \pi = 0$. Hyperbolic sine is not oscillatory, so this equation is only satisfied if $C_9 = 0$. Consequently, the trivial solution, $Y(y) = 0$, is obtained, meaning there are no negative eigenvalues.

According to the principle of superposition, the general solution for u is a linear combination of the eigenfunctions $X(x)Y(y)$ over all the eigenvalues.

\[
u(x, y) = A_0 x + \sum_{n=1}^{\infty} A_n \sinh nx \cos ny
\]

To determine the coefficients, A_0 and A_n, we use the inhomogeneous boundary condition at $x = \pi$.

\[
u(\pi, y) = A_0 \pi + \sum_{n=1}^{\infty} A_n \sinh n\pi \cos ny = \frac{1}{2}(1 + \cos 2y)
\]

Because of the form of the right side, A_0 and A_n can be found by matching the coefficients on both sides.

\[
A_0 \pi + \sum_{n=1}^{\infty} A_n \sinh n\pi \cos ny = \frac{1}{2} + \frac{1}{2} \cos 2y \quad \Rightarrow \quad \begin{cases} A_0 \pi = \frac{1}{2} \\ A_2 \sinh 2\pi = \frac{1}{2} \\ A_n \sinh n\pi = 0, \quad n \neq 2 \end{cases}
\]

Thus, the coefficients are

\[
\begin{cases} A_0 = \frac{1}{2\pi} \\ A_2 = \frac{1}{2\sinh 2\pi} \\ A_n = 0, \quad n \neq 2 \end{cases}
\]

Therefore,

\[
u(x, y) = \frac{1}{2\pi} x + \frac{1}{2\sinh 2\pi} \sinh 2x \cos 2y.
\]
Method 2 - The Easy Way

From the form of the inhomogeneous boundary condition at $x = \pi$,

$$u(\pi, y) = \frac{1}{2} + \frac{1}{2} \cos 2y,$$

we assume the solution has a similar form.

$$u(x, y) = f(x) + g(x) \cos 2y$$

Plug it into the PDE to determine $f(x)$ and $g(x)$.

$$u_{xx} + u_{yy} = f''(x) + g''(x) \cos 2y - 4g(x) \cos 2y = 0$$

Factor $\cos 2y$.

$$f''(x) + [g''(x) - 4g(x)] \cos 2y = 0$$

If we set

$$f''(x) = 0,$$

then the previous equation reduces to

$$[g''(x) - 4g(x)] \cos 2y = 0.$$ \hspace{1cm} (1)

Divide both sides by $\cos 2y$ to obtain an ODE for g.

$$g''(x) - 4g(x) = 0$$ \hspace{1cm} (2)

The general solution for f is obtained by integrating twice, and the general solution for g can be written in terms of hyperbolic sine and hyperbolic cosine.

$$f(x) = C_{11} x + C_{12}$$

$$g(x) = C_{13} \cosh 2x + C_{14} \sinh 2x$$

Using the boundary condition at $x = \pi$ gives us two equations.

$$f(\pi) = C_{11} \pi + C_{12} = \frac{1}{2}$$

$$g(\pi) = C_{13} \cosh 2\pi + C_{14} \sinh 2\pi = \frac{1}{2}$$

Using the boundary condition at $x = 0$, $u(0, y) = 0$, gives us two more.

$$f(0) = C_{12} = 0$$

$$g(0) = C_{13} = 0$$

With these values for C_{12} and C_{13}, we get

$C_{11} = \frac{1}{2\pi}$ and $C_{14} = \frac{1}{2 \sinh 2\pi}$.

So then

$$f(x) = \frac{1}{2\pi} x$$

$$g(x) = \frac{1}{2 \sinh 2\pi} \sinh 2x.$$ \hspace{1cm} (3)

Therefore,

$$u(x, y) = \frac{1}{2\pi} x + \frac{1}{2 \sinh 2\pi} \sinh 2x \cos 2y.$$
Figure 1: This is a plot of the two-dimensional solution surface $u(x, y)$ in three-dimensional xyu-space. Notice that the maximum and minimum values of u lie on the boundary (maximum principle).