Exercise 5

(a) Find the steady-state temperature distribution inside an annular plate \(\{1 < r < 2\} \), whose outer edge \((r = 2)\) is insulated, and on whose inner edge \((r = 1)\) the temperature is maintained as \(\sin^2 \theta\). (Find explicitly all the coefficients, etc.)

(b) Same, except \(u = 0\) on the outer edge.

Solution

The governing equation for the steady-state temperature \(u\) in a domain without heat sources is the Laplace equation.

\[\nabla^2 u = 0 \]

Since the domain we want to solve it in is an annulus \((1 < r < 2)\), we choose to write the Laplacian operator in polar coordinates.

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \quad 1 < r < 2, \quad 0 < \theta < 2\pi \tag{1}
\]

Part (a)

The insulation at \(r = 2\) means that the derivative in the \(r\)-direction (normal to the circular boundary) is zero. The temperature at \(r = 1\) is given to be \(\sin^2 \theta\), which can be written as \(\frac{1}{2}(1 - \cos 2\theta)\).

\[
u(1, \theta) = \frac{1}{2} - \frac{1}{2} \cos 2\theta
\]
\[
u_r(2, \theta) = 0
\]

From the form of the inhomogeneous boundary condition we hypothesize that the solution has the form

\[u(r, \theta) = \frac{1}{2} + g(r) \cos 2\theta. \]

Apply the boundary conditions for \(u\) to determine the boundary conditions for \(g\).

\[
u(1, \theta) = \frac{1}{2} + g(1) \cos 2\theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta \quad \rightarrow \quad g(1) = -\frac{1}{2}
\]
\[
u_r(2, \theta) = g'(2) \cos 2\theta = 0 \quad \rightarrow \quad g'(2) = 0 \tag{2}
\]

In order to determine \(g(r)\), substitute the expression for \(u(r, \theta)\) into equation (1).

\[
\frac{\partial^2}{\partial r^2} \left[\frac{1}{2} + g(r) \cos 2\theta \right] + \frac{1}{r} \frac{\partial}{\partial r} \left[\frac{1}{2} + g(r) \cos 2\theta \right] + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \left[\frac{1}{2} + g(r) \cos 2\theta \right] = 0
\]

Evaluate the derivatives.

\[
g''(r) \cos 2\theta + \frac{1}{r} g'(r) \cos 2\theta + \frac{1}{r^2} g(r)(-4 \cos 2\theta) = 0
\]

Multiply both sides by \(r^2/ \cos 2\theta\).

\[
r^2 g'' + rg' - 4g = 0
\]

www.stemjock.com
Since θ is not present in this equation, the hypothesis for $u(r, \theta)$ is legitimate. This is an equidimensional ODE for g, so it has solutions of the form

$$g(r) = r^m \quad \rightarrow \quad g'(r) = mr^{m-1} \quad \rightarrow \quad g''(r) = m(m - 1)r^{m-2}.$$

Substitute these expressions into the ODE to determine the constants m.

$$m(m - 1)r^m + mr^m - 4r^m = 0$$

Divide both sides by r^m.

$$m(m - 1) + m - 4 = 0$$

Solve for m.

$$m^2 - 4 = 0 \quad \rightarrow \quad m = \{\pm 2\}$$

Consequently,

$$g(r) = C_1r^2 + C_2r^{-2}.$$

Now apply the boundary conditions for g to determine C_1 and C_2.

$$g(1) = C_1 + C_2 = -\frac{1}{2}$$

$$g'(2) = 4C_1 - \frac{C_2}{4} = 0$$

Solving the system of equations yields $C_1 = -1/34$ and $C_2 = -8/17$.

$$g(r) = -\frac{1}{34}r^2 - \frac{8}{17}r^{-2}$$

$$= -\frac{r^4 + 16}{34r^2}$$

Therefore,

$$u(r, \theta) = \frac{1}{2} - \frac{r^4 + 16}{34r^2} \cos 2\theta.$$

This solution can be written in Cartesian coordinates by writing $\cos 2\theta = 2\cos^2 \theta - 1$ and then using $r^2 = x^2 + y^2$ and $\cos \theta = x/\sqrt{x^2 + y^2}$.

$$u(x, y) = \frac{1}{2} - \frac{(x^2 + y^2)^2 + 16}{34(x^2 + y^2)} \left(\frac{2x^2}{x^2 + y^2} - 1 \right)$$

$$= \frac{1}{2} - \frac{(x^2 + y^2)^2 + 16}{34(x^2 + y^2)^2} (x^2 - y^2)$$
Figure 1: This is a plot of the two-dimensional solution surface \(u(x,y) \) in three-dimensional \(xyu \)-space. Notice that the maximum and minimum values of \(u \) lie on the boundary (maximum principle).

Part (b)

Here the boundary conditions are

\[
\begin{align*}
 u(1, \theta) &= \frac{1}{2} - \frac{1}{2} \cos 2\theta \\
 u(2, \theta) &= 0
\end{align*}
\]

From the form of the inhomogeneous boundary condition we hypothesize that the solution has the form

\[
 u(r, \theta) = f(r) + h(r) \cos 2\theta.
\]

Apply the boundary conditions for \(u \) to determine the boundary conditions for \(f \) and \(h \).

\[
\begin{align*}
 u(1, \theta) &= f(1) + h(1) \cos 2\theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta \quad \rightarrow \quad f(1) = \frac{1}{2} \quad \text{and} \quad h(1) = -\frac{1}{2} \\
 u(2, \theta) &= f(2) + h(2) \cos 2\theta = 0 \quad \rightarrow \quad f(2) = 0 \quad \text{and} \quad h(2) = 0
\end{align*}
\]

In order to determine \(f(r) \) and \(h(r) \), substitute the expression for \(u(r, \theta) \) into equation (1).

\[
\frac{\partial^2}{\partial r^2} [f(r) + h(r) \cos 2\theta] + \frac{1}{r} \frac{\partial}{\partial r} [f(r) + h(r) \cos 2\theta] + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} [f(r) + h(r) \cos 2\theta] = 0
\]

Evaluate the derivatives.

\[
f''(r) + h''(r) \cos 2\theta + \frac{1}{r} [f'(r) + h'(r) \cos 2\theta] + \frac{1}{r^2} [-4h(r) \cos 2\theta] = 0
\]

Expand the left side.

\[
f''(r) + \frac{1}{r} f'(r) + h''(r) \cos 2\theta + \frac{1}{r} h'(r) \cos 2\theta - \frac{4}{r^2} h(r) \cos 2\theta = 0
\]

If we set

\[
f''(r) + \frac{1}{r} f'(r) = 0, \quad (3)
\]
then the previous equation reduces to

\[h''(r) \cos 2\theta + \frac{1}{r} h'(r) \cos 2\theta - \frac{4}{r^2} h(r) \cos 2\theta = 0. \]

Dividing both sides by \(\cos 2\theta \),

\[h''(r) + \frac{1}{r} h'(r) - \frac{4}{r^2} h(r) = 0, \]

we obtain an equation that is independent of \(\theta \), proving the legitimacy of the hypothesis.

Equation (3) is first-order in \(f' \), so we multiply both sides by the integrating factor \(I \).

\[I = \exp \left(\int \frac{1}{s} \, ds \right) = \exp(\ln r) = r \]

Doing so gives us

\[r f'' + f' = 0. \]

The left side can be written as \(d/dr(If') \) as a result of the product rule.

\[\frac{d}{dr}(rf') = 0 \]

Integrate both sides with respect to \(r \).

\[rf' = C_3 \]

Divide both sides by \(r \).

\[f' = \frac{C_3}{r} \]

Integrate both sides with respect to \(r \) once more.

\[f(r) = C_3 \ln r + C_4 \]

Apply the two boundary conditions for \(f \) to determine \(C_3 \) and \(C_4 \).

\[f(1) = C_4 = \frac{1}{2} \]

\[f(2) = C_3 \ln 2 + C_4 = 0 \quad \rightarrow \quad C_3 = -\frac{1}{2\ln 2} \]

Consequently,

\[f(r) = -\frac{1}{2\ln 2} \ln r + \frac{1}{2} \]

\[= \frac{1}{2} \left(1 - \frac{\ln r}{\ln 2} \right). \]

Now equation (4) will be solved. Multiply both sides of it by \(r^2 \).

\[r^2 h'' + rh' - 4h = 0 \]

This is identical to the ODE solved earlier for \(g \), so it has the same general solution.

\[h(r) = C_5 r^2 + C_6 r^{-2} \]

www.stemjock.com
Apply the two boundary conditions for h to determine C_5 and C_6.

\[h(1) = C_5 + C_6 = -\frac{1}{2} \]
\[h(2) = 4C_5 + \frac{C_6}{4} = 0 \]

Solving this system of equations yields $C_5 = 1/30$ and $C_6 = -8/15$. Consequently,

\[h(r) = \frac{1}{30} r^2 - \frac{8}{15r^2} \]
\[= \frac{r^4 - 16}{30r^2}. \]

Therefore,

\[u(r, \theta) = \frac{1}{2} \left(1 - \ln r^2 + \frac{r^4 - 16}{30r^2} \cos 2\theta. \right) \]

This solution can be written in Cartesian coordinates by writing $\cos 2\theta = 2 \cos^2 \theta - 1$ and then using $r^2 = x^2 + y^2$ and $\cos \theta = x/\sqrt{x^2 + y^2}$.

\[u(x, y) = \frac{1}{2} \left(1 - \ln \sqrt{x^2 + y^2} \right) + \frac{(x^2 + y^2)^2 - 16}{30(x^2 + y^2)} \left(\frac{2x^2}{x^2 + y^2} - 1 \right) \]
\[= \frac{1}{2} \left(1 - \ln \sqrt{x^2 + y^2} \right) + \frac{(x^2 + y^2)^2 - 16}{30(x^2 + y^2)^2} (x^2 - y^2). \]

Figure 2: This is a plot of the two-dimensional solution surface $u(x, y)$ in three-dimensional xyu-space. Notice that the maximum and minimum values of u lie on the boundary (maximum principle).