Exercise 2

Prove the uniqueness up to constants of the Neumann problem using the energy method.

Solution

The Neumann problem is

\[\Delta u = f \quad \text{in } D \]
\[\frac{\partial u}{\partial n} = h \quad \text{on } \partial D. \]

Suppose that in addition to \(u \) there is a second solution \(v \) to this problem.

\[\Delta v = f \quad \text{in } D \]
\[\frac{\partial v}{\partial n} = h \quad \text{on } \partial D \]

Subtract the respective sides of the equations valid in \(D \) as well as the respective sides of the equations valid on \(\partial D \).

\[\Delta u - \Delta v = f - f \quad \text{in } D \]
\[\frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} = h - h \quad \text{on } \partial D \]

Factor the operator in the first equation.

\[\Delta(u - v) = 0 \quad \text{in } D \]
\[\frac{\partial}{\partial n}(u - v) = 0 \quad \text{on } \partial D \]

Let \(w = u - v \).

\[\Delta w = 0 \quad \text{in } D \]
\[\frac{\partial w}{\partial n} = 0 \quad \text{on } \partial D \]

Taking the two arbitrary functions to be \(w \), Green’s first identity says that

\[\iiint_{\partial D} w \frac{\partial w}{\partial n} dS = \iiint_D |\nabla w|^2 dV + \iiint_D w \Delta w dV \]
\[0 = \iiint_D |\nabla w|^2 dV. \]

By the vanishing theorem, the integrand is zero.

\[|\nabla w|^2 = 0 \]
\[\nabla w = 0 \]
\[w = \text{constant} \]

Therefore, \(u = v + \text{constant} \), which means the solution to the Neumann problem is unique up to a constant.

www.stemjock.com