## Exercise 10

Derive the mean value property of harmonic functions u(x, y, z) by the following method. A harmonic function is a wave that happens not to depend on time, so that its mean value  $\overline{u}(r,t) = \overline{u}(r)$  satisfies (5). Deduce that  $\overline{u}(r) = u(\mathbf{0})$ .

## Solution

 $\overline{u}(r,t)$  is defined to be the average of u over a spherical surface of radius r. Spherical coordinates  $(r,\phi,\theta)$  will be used to write the forthcoming integrals explicitly, where  $\theta$  represents the angle from the polar axis.

$$\overline{u}(r,t) = \frac{\iint u \, dS}{\iint dS} = \frac{\int_0^\pi \int_0^{2\pi} u(r,\phi,\theta,t)(r^2 \sin\theta \, d\phi \, d\theta)}{\int_0^\pi \int_0^{2\pi} (r^2 \sin\theta \, d\phi \, d\theta)} = \frac{\cancel{Z} \int_0^\pi \int_0^{2\pi} u(r,\phi,\theta,t) \sin\theta \, d\phi \, d\theta}{\cancel{Z} \left(\int_0^\pi \sin\theta \, d\theta\right) \left(\int_0^{2\pi} d\phi\right)}$$

Evaluating the integrals in the denominator, we have

$$\overline{u}(r,t) = \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} u(r,\phi,\theta,t) \sin\theta \,d\phi \,d\theta. \tag{1}$$

The three-dimensional wave equation in space is

$$u_{tt} = c^2 \nabla^2 u$$
,  $-\infty < x, y, z < \infty$ ,  $t > 0$ .

Integrate both sides over the volume enclosed by that sphere of radius r.

$$\iiint\limits_{V} u_{tt} \, dV = \iiint\limits_{V} c^2 \nabla^2 u \, dV$$

$$\iiint\limits_{V} u_{tt} \, dV = c^2 \iiint\limits_{V} \nabla \cdot \nabla u \, dV$$

Apply the divergence theorem to the volume integral on the right side to turn it into a surface integral over the sphere's boundary.

$$\iiint\limits_{V} u_{tt} \, dV = c^2 \oiint\limits_{S} \nabla u \cdot \hat{\mathbf{n}} \, dS$$

The unit vector normal to the boundary is the radial unit vector:  $\hat{\mathbf{n}} = \hat{\mathbf{r}}$ .  $\nabla u \cdot \hat{\mathbf{r}}$  can be interpreted as the directional derivative in the radial direction, that is,  $\partial u/\partial r$ .

$$\iiint_{V} \frac{\partial^{2} u}{\partial t^{2}} dV = c^{2} \oiint_{S} \frac{\partial u}{\partial r} dS$$

$$\int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{r} \frac{\partial^{2} u}{\partial t^{2}} (\rho^{2} \sin \theta \, d\rho \, d\phi \, d\theta) = c^{2} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{\partial u}{\partial r} (r^{2} \sin \theta \, d\phi \, d\theta)$$

$$\int_{0}^{r} \rho^{2} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{\partial^{2} u}{\partial t^{2}} \sin \theta \, d\phi \, d\theta \, d\rho = c^{2} r^{2} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{\partial u}{\partial r} \sin \theta \, d\phi \, d\theta$$

$$\int_0^r \rho^2 \frac{\partial^2}{\partial t^2} \left[ \int_0^\pi \int_0^{2\pi} u(\rho, \phi, \theta, t) \sin \theta \, d\phi \, d\theta \right] d\rho = c^2 r^2 \frac{\partial}{\partial r} \left[ \int_0^\pi \int_0^{2\pi} u(r, \phi, \theta, t) \sin \theta \, d\phi \, d\theta \right]$$

Divide both sides by  $4\pi$ .

$$\int_0^r \rho^2 \frac{\partial^2}{\partial t^2} \left[ \frac{1}{4\pi} \int_0^\pi \int_0^{2\pi} u(\rho,\phi,\theta,t) \sin\theta \, d\phi \, d\theta \right] d\rho = c^2 r^2 \frac{\partial}{\partial r} \left[ \frac{1}{4\pi} \int_0^\pi \int_0^{2\pi} u(r,\phi,\theta,t) \sin\theta \, d\phi \, d\theta \right]$$

Substitute equation (1) here.

$$\int_0^r \rho^2 \frac{\partial^2 \overline{u}}{\partial t^2} \, d\rho = c^2 r^2 \frac{\partial \overline{u}}{\partial r}$$

Suppose now that u is a harmonic function, a wave that does not depend on time. Then  $\overline{u} = \overline{u}(r)$ , and the left side is equal to zero.

$$0 = c^2 r^2 \frac{d\overline{u}}{dr}$$

Divide both sides by  $c^2r^2$ .

$$\frac{d\overline{u}}{dr} = 0$$

Integrate both sides with respect to r.

$$\bar{u}(r) = C_1$$

We conclude that the average of u (a harmonic function) over a spherical surface is the same at every radius, including r = 0.

$$\overline{u}(r) = \overline{u}(0)$$

$$= \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} u(0, \phi, \theta) \sin \theta \, d\phi \, d\theta$$

Note that u evaluated at r=0 is u(x=0,y=0,z=0), or  $u(\mathbf{0})$ , and does not depend on  $\phi$  or  $\theta$ .

$$= \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} u(\mathbf{0}) \sin \theta \, d\phi \, d\theta$$
$$= \frac{u(\mathbf{0})}{4\pi} \int_0^{\pi} \int_0^{2\pi} \sin \theta \, d\phi \, d\theta$$
$$= \frac{u(\mathbf{0})}{4\pi} \left( \int_0^{\pi} \sin \theta \, d\theta \right) \left( \int_0^{2\pi} d\phi \right)$$
$$= \frac{u(\mathbf{0})}{4\pi} (2)(2\pi)$$

Therefore,

$$\overline{u}(r) = u(\mathbf{0}).$$