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Problem 2B.7

Annular flow with inner cylinder moving axially (see Fig. 2B.7). A cylindrical rod of
radius κR moves axially with velocity vz = v0 along the axis of a cylindrical cavity of radius R as
seen in the figure. The pressure at both ends of the cavity is the same, so that the fluid moves
through the annular region solely because of the rod motion.

(a) Find the velocity distribution in the narrow annular region.

(b) Find the mass rate of flow through the annular region.

(c) Obtain the viscous force acting on the rod over the length L.

(d) Show that the result in (c) can be written as a “plane slit” formula multiplied by a
“curvature correction.” Problems of this kind arise in studying the performance of
wire-coating dies.1

Answers: (a)
vz
v0

=
ln(r/R)

lnκ

(b) w =
πR2v0ρ

2

[
(1− κ2)

ln(1/κ)
− 2κ2

]
(c) Fz = −2πLµv0/ ln(1/κ)

(d) Fz =
−2πLµv0

ε

(
1− 1

2
ε− 1

12
ε2 + · · ·

)
where ε = 1− κ (see Problem 2B.5)

Solution

Unlike the previous problem, the fluid here is flowing horizontally, so gravity will not influence its
velocity. If we assume no-slip boundary conditions, then the fluid velocity at the cylindrical rod
r = κR is v0 and the fluid velocity at the outer wall r = R is 0.

Part (a)

Choose a cylindrical coordinate system with the positive z-axis pointing to the right, the direction
the inner cylinder is moving in. Then the fluid flows in the z-direction and varies as a function of
radius from the cylinder’s axis.

vz = vz(r)

1J. B. Paton, P. H. Squires, W. H. Darnell, F. M. Cash, and J. F. Carley, Processing of Thermoplastic Materials,
E. C. Bernhardt (ed.), Reinhold, New York (1959), Chapter 4.
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As a result, the boundary conditions are written as follows.

B.C. 1: vz = v0 when r = κR

B.C. 2: vz = 0 when r = R

Gravity is pointing down, so we can say that the pressure does not depend on z.

p 6= p(z)

Because vz = vz(r), only φrz (the z-momentum in the positive r-direction) and φzz (the
z-momentum in the positive z-direction) contribute to the momentum balance.

Figure 1: This is the shell over which the momentum balance is made for flow in a horizontally
oriented annulus.

Rate of z-momentum into the shell at z: (2πr∆r)φzz|z
Rate of z-momentum out of the shell at z + L: (2πr∆r)φzz|z+L
Rate of z-momentum into the shell at r: (2πrL)φrz|r
Rate of z-momentum out of the shell at r + ∆r: [2π(r + ∆r)L]φrz|r+∆r

Component of gravitational force on the shell in z-direction: 0

If we assume steady flow, then the momentum balance is

Rate of momentum in− Rate of momentum out + Force of gravity = 0.

Considering only the z-component, we have

(2πr∆r)φzz|z − (2πr∆r)φzz|z+L + (2πrL)φrz|r − [2π(r + ∆r)L]φrz|r+∆r = 0.

Factor the left side.

−2πr∆r(φzz|z+L − φzz|z)− 2πL[ (r + ∆r)φrz|r+∆r − rφrz|r] = 0
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Divide both sides by 2π∆rL.

−r
φzz|z+L − φzz|z

L
−

(r + ∆r)φrz|r+∆r − rφrz|r
∆r

= 0

Take the limit as ∆r → 0.

−r
φzz|z+L − φzz|z

L
− lim

∆r→0

(r + ∆r)φrz|r+∆r − rφrz|r
∆r

= 0

The second term is the definition of the first derivative of rφrz.

−r
φzz|z+L − φzz|z

L
− d

dr
(rφrz) = 0

Now substitute the expressions for φrz and φzz.

φrz = τrz +���ρvrvz = τrz

φzz = pδzz +HHτzz + ρvzvz = p+ ρv2
z

Since p and vz do not depend on z, the p and ρv2
z terms cancel.

−r�
��p|z+L +XXXXXρv2

z

∣∣
z+L
−��p|z −

HHHρv2
z

∣∣
z

L
− d

dr
(rτrz) = 0

So we have
d

dr
(rτrz) = 0.

From Newton’s law of viscosity we know that τrz = −µ(dvz/dr), so

d

dr

(
−µrdvz

dr

)
= 0.

Integrate both sides of the differential equation with respect to r.

−µrdvz
dr

= C1

Divide both sides by −µr.
dvz
dr

= −C1

µr

Integrate both sides of the differential equation with respect to r once more.

vz(r) = −C1

µ
ln r + C2

Apply the boundary conditions now to determine C1 and C2.

vz(κR) = −C1

µ
ln(κR) + C2 = v0

vz(R) = −C1

µ
lnR+ C2 = 0
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Solving the system of equations, we get

C1 = − µ

lnκ
v0

C2 = − lnR

lnκ
v0.

Armed with the constants of integration, the velocity distribution is known.

vz(r) =
1

lnκ
v0 ln r − lnR

lnκ
v0

=
v0

lnκ
(ln r − lnR)

=
v0

lnκ
ln
r

R

Therefore,
vz
v0

=
ln(r/R)

lnκ
.

Part (b)

The mass flow rate w is, assuming constant density ρ,

w =
dm

dt
=
d(ρV )

dt
= ρ

dV

dt
.

The volumetric flow rate dV/dt is average velocity times cross-sectional area.

w = ρ〈vz〉A
The average velocity is obtained by integrating the velocity over the area the fluid is flowing
through and then dividing by that area.

= ρ

(
�
��
1

A

ˆ
vz dA

)
��A

= ρ

ˆ R

κR
vz (2πr dr)

= 2πρ

ˆ R

κR
rvz dr

= 2πρ

ˆ R

κR

v0

lnκ
r ln

r

R
dr

Make a substitution to solve the integral.

u =
r

R
→ r = Ru

du =
dr

R
→ Rdu = dr

The mass flow rate becomes

w = 2πρ

ˆ 1

κ

v0

lnκ
(Ru) lnu(Rdu)

=
2πρv0R

2

lnκ

ˆ 1

κ
u lnu du

=
2πρv0R

2

lnκ

(
−u

2

4
+
u2

2
lnu

)∣∣∣∣1
κ
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w =
2πρv0R

2

lnκ

(
−12

4
+
�
�
��12

2
ln 1 +

κ2

4
+
κ2

2
lnκ

)
=

2πρv0R
2

lnκ

(
κ2 − 1

4
+
κ2

2
lnκ

)
=

2πρv0R
2

4

(
κ2 − 1

lnκ
+ 2κ2

)
=
πρv0R

2

2

(
1− κ2

− lnκ
+ 2κ2

)
Therefore,

w =
πR2v0ρ

2

[
(1− κ2)

ln(1/κ)
− 2κ2

]
.

Part (c)

The viscous stress τrz physically represents the force in the z-direction on a unit area
perpendicular to the r-direction. By evaluating τrz at r = κR and multiplying it by the surface
area of the inner cylinder, we obtain the viscous force acting on it over its length. The final point
to note is that because the fluid is acting from a larger radius r on the inner cylinder, which has a
smaller radius κR, we place a minus sign in front of τrz.

Fz = −τrz|r=κR · 2π(κR)L

From Newton’s law of viscosity, we have

τrz = −µdvz
dr

= −µ d
dr

( v0

lnκ
ln
r

R

)
= −µ v0

lnκ
��R

r
· 1

��R

= −µv0

lnκ
· 1

r
.

Now we can find the force.

Fz = −
(
−µv0

lnκ
· 1

r

)∣∣∣∣
r=κR

· 2π(κR)L

=
2π��κRLµv0

lnκ
· 1

��κR

=
2πLµv0

lnκ

= −2πLµv0

− lnκ

Therefore,

Fz = −2πLµv0

ln(1/κ)
.

The minus sign here makes sense because the viscous (frictional) force of the fluid opposes the
motion of the cylinder, which is moving in the positive z-direction.
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Part (d)

To make the annulus a plane slit, we let the radius of the inner cylinder tend towards the radius
of the outer cylinder; that is, κ is very slightly less than 1.

κ = 1− ε, where 0 < ε� 1

Substitute this into the formula for Fz.

Fz =
2πLµv0

lnκ

=
2πLµv0

ln(1− ε)

The Taylor series expansion for ln(1− ε) is as follows.

ln(1− ε) = −ε− ε2

2
− ε3

3
− · · ·

Substitute this formula into Fz.

Fz =
2πLµv0

−ε− ε2

2 −
ε3

3 − · · ·

= −2πLµv0

ε

1

1 + ε
2 + ε2

3 + · · ·

Use long division to obtain a series for the fraction.

1− ε

2
− ε2

12
− · · ·

1 +
ε

2
+
ε2

3
+ · · ·

)
1 + 0ε+ 0ε2

(−) 1 +
ε

2
+
ε2

3
+ · · ·

− ε
2 −

ε2

3 − · · ·

(−) − ε

2
− ε2

4
− 2ε5 − · · ·

− ε2

12 − · · ·

Therefore,

Fz =
−2πLµv0

ε

(
1− ε

2
− ε2

12
− · · ·

)
.

The viscous stress τxz for laminar slit flow with a wall moving at speed v0 was obtained in
Problem 2B.4.

τxz =

(
P0 −PL

L

)
x− µv0

2B
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If we orient the slit horizontally so that pressure and gravity do not influence the fluid flow as is
the case in this problem, then τxz simplifies.

Figure 2: This is Couette flow in a horizontal slit with one moving wall at x = B.

τxz = −µv0

2B

The viscous force acting on the moving wall is Fz = +τxz|x=B ·WL. There is no minus sign here
because the fluid acting on the wall has a lower x-coordinate than the moving wall at x = B.

Fz =
(
−µv0

2B

)∣∣∣
x=B
·WL

= −WLµv0

2B

Comparing this formula with the boxed result, we see that they are equivalent if ε = 2B, the slit
width, and W = 2π. W should be a distance, but it’s only an angle; thus, the fraction in the
boxed result is not truly a plane slit formula. The remaining series in parentheses then must be a
curvature correction.

Fz = −2πLµv0

ε︸ ︷︷ ︸
“plane slit” formula

(
1− ε

2
− ε2

12
− · · ·

)
︸ ︷︷ ︸

curvature correction

www.stemjock.com


