Problem 9

In each of Problems 7 through 10, write down a differential equation of the form \(\frac{dy}{dt} = ay + b \) whose solutions have the required behavior as \(t \to \infty \).

All other solutions diverge from \(y = 2 \).

Solution

\(\frac{dy}{dt} \) represents the rate of change of \(y \) with respect to \(t \). Setting \(\frac{dy}{dt} = 0 \) in the differential equation allows us to find the equilibrium solution.

\[
0 = ay + b \\
y = -\frac{b}{a}
\]

\(a \) and \(b \) need to be chosen so that this ratio evaluates to 2. In addition, \(a \) has to be positive so that the nonequilibrium solutions diverge as \(t \to \infty \). One possible choice is \(a = 1 \) and \(b = -2 \).

\[
\frac{dy}{dt} = y - 2
\]

Below in Figure 1 is the direction field for this differential equation along with possible solutions.

Figure 1: In blue are the direction field vectors and in red are possible solutions to the differential equation, depending what the initial condition is. The nonequilibrium solutions appear to diverge from \(y = 2 \) as \(t \to \infty \).