Problem 25

For small, slowly falling objects, the assumption made in the text that the drag force is proportional to the velocity is a good one. For larger, more rapidly falling objects, it is more accurate to assume that the drag force is proportional to the square of the velocity.²

(a) Write a differential equation for the velocity of a falling object of mass \(m \) if the magnitude of the drag force is proportional to the square of the velocity and its direction is opposite to that of the velocity.

(b) Determine the limiting velocity after a long time.

(c) If \(m = 10 \text{ kg} \), find the drag coefficient so that the limiting velocity is 49 m/s.

(d) Using the data in part (c), draw a direction field and compare it with Figure 1.1.3.

Solution

Part (a)

Let \(k \) be the proportionality constant so that the drag force is \(F_d = kv^2 \). There are two forces acting on a falling object, the gravitational force \(mg \) and the resistive drag force \(kv^2 \), as illustrated in the free-body diagram below.

\[
\sum \mathbf{F} = ma
\]

Newton’s second law states that the sum of the forces is equal to mass times acceleration.

This vector equation represents the following two scalar equations in the chosen coordinate system.

\[
\sum F_x = ma_x
\]
\[
\sum F_y = ma_y
\]

www.stemjock.com
Apply Newton’s law to the falling object.

\[0 = 0 \]
\[mg - kv^2 = ma \]

Acceleration is the time rate of change of velocity.

\[mg - kv^2 = m \frac{dv}{dt} \]

Therefore,

\[\frac{dv}{dt} = g - \frac{k}{m}v^2. \]

Part (b)

After a long time the drag force matches the gravitational force in magnitude, and the object’s velocity remains the same. That is, \(\frac{dv}{dt} \to 0 \) as \(t \to \infty \).

\[0 = g - \frac{k}{m}v^2 \]
\[\frac{k}{m}v^2 = g \]
\[v^2 = \frac{mg}{k} \]

Therefore, the equilibrium solution for the velocity is

\[v = \sqrt{\frac{mg}{k}}. \]

Part (c)

Solve the previous equation for the drag coefficient \(k \).

\[k = \frac{mg}{v^2} \]

If \(m = 10 \) kg and \(v = 49 \) m/s, the drag coefficient is

\[k = \frac{10g}{2401} \text{ kg/m} \approx 0.0408 \text{ kg/m}. \]

Part (d)

With \(m = 10 \) kg and \(k = 10g/2401 \) kg/m, the differential equation for the velocity becomes

\[\frac{dv}{dt} = g - \frac{g}{2401}v^2. \]

The direction field is a two-dimensional vector field that shows what the direction of the solution is at every point in a region. Every solution to the differential equation is a curve drawn such that the direction field vectors are tangent to it at every point.

\[\langle dt, dv \rangle = \left\langle 1, \frac{dv}{dt} \right\rangle dt = \left\langle 1, g - \frac{g}{2401}v^2 \right\rangle dt \]

www.stemjock.com
Figure 1: In blue are the direction field vectors and in red are possible solutions to equation (1), depending what the initial condition is. The nonequilibrium solutions appear to converge to $v = 49$ as $t \to \infty$.

www.stemjock.com
Below in Figure 2 is Figure 1.1.3, the direction field of

\[
\frac{dv}{dt} = g - \frac{v}{5}.
\]

(2)

Figure 2: In blue are the direction field vectors and in red are possible solutions to equation (2), depending what the initial condition is. The nonequilibrium solutions appear to converge to \(v = 49 \) as \(t \to \infty \).

The solution curves of equation (2) converge more slowly to \(v = 49 \) than those of equation (1).