Problem 8

Consider a population \(p \) of field mice that grows at a rate proportional to the current population, so that \(\frac{dp}{dt} = rp \).

(a) Find the rate constant \(r \) if the population doubles in 30 days.

(b) Find \(r \) if the population doubles in \(N \) days.

Solution

Note that \(t \) is measured in days in this problem.

\[p' = rp \]

Divide both sides by \(p \).

\[\frac{p'}{p} = r \]

The left side can be written as \(\frac{d}{dt}(\ln |p|) \) by the chain rule. The absolute value sign is included because the argument of the logarithm cannot be negative.

\[\frac{d}{dt} \ln |p| = r \]

Integrate both sides with respect to \(t \).

\[\ln |p| = rt + C \]

Exponentiate both sides.

\[|p| = e^{rt+C} = e^C e^{rt} \]

Introduce \(\pm \) on the right side to remove the absolute value sign.

\[p(t) = \pm e^{C} e^{rt} \]

Let \(A = \pm e^{C} \).

\[p(t) = Ae^{rt} \]

Apply the initial condition \(p(0) = p_0 \), where \(p_0 \) is the initial mouse population, to determine \(A \).

\[p(0) = A = p_0 \]

Therefore, the general solution to the ODE is

\[p(t) = p_0 e^{rt}. \]
Part (a)

In order to find the rate constant r if the population doubles in 30 days, set $p = 2p_0$ and $t = 30$ days and solve the resulting equation for r.

\[
2p_0 = p_0 e^{30r} \\
2 = e^{30r} \\
\ln 2 = \ln e^{30r} \\
\ln 2 = 30r \ln e \\
\ln 2 = 30r
\]

Therefore,

\[r = \frac{\ln 2}{30} \approx 0.0231 \text{ day}^{-1}.
\]

r is in units of $1/\text{day}$ because the exponent of e must be dimensionless.

Part (b)

In order to find the rate constant r if the population doubles in N days, set $p = 2p_0$ and $t = N$ and solve the resulting equation for r.

\[
2p_0 = p_0 e^{rN} \\
2 = e^{rN} \\
\ln 2 = \ln e^{rN} \\
\ln 2 = rN \ln e \\
\ln 2 = rN
\]

Therefore,

\[r = \frac{\ln 2}{N}.
\]