Problem 30

Another way to derive the pendulum equation (12) is based on the principle of conservation of energy.

(a) Show that the kinetic energy \(T \) of the pendulum in motion is

\[
T = \frac{1}{2} mL^2 \left(\frac{d\theta}{dt} \right)^2.
\]

(b) Show that the potential energy \(V \) of the pendulum, relative to its rest position, is

\[
V = mgL(1 - \cos \theta).
\]

(c) By the principle of conservation of energy, the total energy \(E = T + V \) is constant. Calculate \(dE/dt \), set it equal to zero, and show that the resulting equation reduces to Eq. (12).

Solution

![Diagram of a pendulum](image)

FIGURE 1.3.1 An oscillating pendulum.

Part (a)

The kinetic energy is

\[
T = \frac{1}{2} mv^2 = \frac{1}{2} m \left(L \frac{d\theta}{dt} \right)^2 = \frac{1}{2} mL^2 \left(\frac{d\theta}{dt} \right)^2.
\]

Part (b)

The potential energy is

\[
V = mgh = mg(L - L \cos \theta) = mgL(1 - \cos \theta).
\]

Part (c)

By conservation of energy,

\[
E = T + V = \text{constant}.
\]
Differentiate all sides with respect to t.

\[
\frac{dE}{dt} = \frac{dT}{dt} + \frac{dV}{dt} = 0
\]

\[
\frac{d}{dt} \left[\frac{1}{2} mL^2 \left(\frac{d\theta}{dt} \right)^2 \right] + \frac{d}{dt}[mgL(1 - \cos \theta)] = 0
\]

\[
\frac{1}{2} mL^2 \cdot 2 \left(\frac{d\theta}{dt} \right) \frac{d^2\theta}{dt^2} + mgL(\sin \theta) \frac{d\theta}{dt} = 0
\]

Divide both sides by $mL^2 \frac{d\theta}{dt}$.

\[
\frac{d^2\theta}{dt^2} + \frac{g}{L} \sin \theta = 0
\] \hspace{1cm} (12)

This is equation (12) in the textbook.