Problem 34

In each of Problems 34 through 37, construct a first order linear differential equation whose solutions have the required behavior as \(t \to \infty \). Then solve your equation and confirm that the solutions do indeed have the specified property.

All solutions have the limit 3 as \(t \to \infty \).

Solution

The rate of change of \(y \) will become negligible as \(t \) gets big enough, so we choose

\[
y' + y = 3.
\]

This is a first-order linear inhomogeneous ODE, so it can be solved by multiplying both sides by an integrating factor \(I \).

\[
I = \exp \left(\int 1 \, ds \right) = e^t
\]

Proceed with the multiplication.

\[
e^t y' + e^t y = 3 e^t
\]

The left side can be written as \(\frac{d}{dt}(e^t y) \) using the product rule.

\[
\frac{d}{dt}(e^t y) = 3 e^t
\]

Integrate both sides with respect to \(t \).

\[
e^t y = \int e^s \, ds + C = 3 e^t + C
\]

Divide both sides by \(e^t \) to obtain the general solution for \(y \).

\[
y(t) = 3 + \frac{C}{e^t}
\]

Take the limit of both sides as \(t \to \infty \).

\[
\lim_{t \to \infty} y(t) = \lim_{t \to \infty} 3 + \lim_{t \to \infty} \frac{C}{e^t} = 3 + \lim_{t \to \infty} 0 = 3
\]

Therefore, all solutions of \(y' + y = 3 \) have the limit 3 as \(t \to \infty \).