Problem 2

In each of Problems 1 through 8, solve the given differential equation.

\[y' = \frac{x^2}{y(1 + x^3)} \]

Solution

This ODE is separable because it is of the form \(y' = f(x)g(y) \), so it can be solved by separating variables.

\[\frac{dy}{dx} = \frac{x^2}{y(1 + x^3)} \]

Bring the terms with \(y \) to the left and bring the terms with \(x \) to the right.

\[y \, dy = \frac{x^2}{1 + x^3} \, dx \]

Integrate both sides.

\[\int y \, dy = \int \frac{x^2}{1 + x^3} \, dx \quad (1) \]

Use a substitution to evaluate the integral on the right.

\[u = 1 + x^3 \]
\[du = 3x^2 \, dx \quad \rightarrow \quad \frac{du}{3} = x^2 \, dx \]

Equation (1) becomes

\[\frac{y^2}{2} = \int \frac{1}{u} \, \frac{du}{3} \]
\[= \frac{1}{3} \ln |u| + C \]
\[= \frac{1}{3} \ln |1 + x^3| + C. \]

Now solve for \(y \).

\[y^2 = \frac{2}{3} \ln |1 + x^3| + 2C \]
\[y(x) = \pm \sqrt{\frac{2}{3} \ln |1 + x^3| + 2C} \]

Therefore, using a new constant \(C_1 \) for \(2C \),

\[y(x) = \pm \sqrt{\frac{2}{3} \ln |1 + x^3| + C_1}. \]