Problem 28

A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2|v|, where v is measured in m/s.

(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.

(b) If the mass is to attain a velocity of no more than 10 m/s, find the maximum height from which it can be dropped.

(c) Suppose that the resistive force is k|v|, where v is measured in m/s and k is a constant. If the mass is dropped from a height of 30 m and must hit the ground with a velocity of no more than 10 m/s, determine the coefficient of resistance k that is required.

Solution

According to Newton’s second law, the equation of motion for the mass is

\[\sum F = ma. \]

This is a vector equation; it consists of three scalar equations—one for each direction in the chosen coordinate system. Since the mass is projected vertically upward, only the equation in the y-direction is relevant.

\[\sum F_y = ma_y \]

Part (a)

Draw the free-body diagram for the falling object, taking the positive y-axis to point upward.

The minus sign in front of 0.2v is due to the fact that the mass is moving down and +y points up. The equation of motion can now be written.

\[-0.2v - mg = ma_y \]

Replace \(a_y \) with \(dv/dt \) and bring 0.2v to the other side.

\[m \frac{dv}{dt} + 0.2v = -mg \]
Divide both sides by \(m \).
\[
\frac{dv}{dt} + \frac{0.2}{m} v = -g
\]
This is a first-order linear inhomogeneous ODE, so it can be solved by multiplying both sides by an integrating factor \(I \).
\[
I = \exp \left(\int \frac{0.2}{m} \, ds \right) = e^{0.2t/m}
\]
Proceed with the multiplication.
\[
e^{0.2t/m} \frac{dv}{dt} + \frac{0.2}{m} e^{0.2t/m} v = -ge^{0.2t/m}
\]
The left side can be written as \(d/dt (Iv) \) by the product rule.
\[
\frac{d}{dt} (e^{0.2t/m} v) = -ge^{0.2t/m}
\]
Integrate both sides with respect to \(t \).
\[
e^{0.2t/m} v = -5mg e^{0.2t/m} + C_1
\]
Divide both sides by \(e^{0.2t/m} \).
\[
v(t) = -5mg + C_1 e^{-0.2t/m}
\]
Since the mass is dropped from rest, the initial condition for \(v \) is \(v(0) = 0 \). Use it to determine \(C_1 \).
\[
v(0) = -5mg + C_1 = 0 \quad \rightarrow \quad C_1 = 5mg
\]
Therefore, the velocity is
\[
v(t) = -5mg + 5mg e^{-0.2t/m} = -5mg(1 - e^{-0.2t/m}).
\]
Replace \(v \) with \(dy/dt \) to get an ODE for the position.
\[
\frac{dy}{dt} = -5mg(1 - e^{-0.2t/m})
\]
Integrate both sides with respect to \(t \).
\[
y(t) = -5mgt - 25m^2 g e^{-0.2t/m} + C_2 \quad (1)
\]
Use the initial condition \(y(0) = 30 \) to determine \(C_2 \).
\[
y(0) = -25m^2 g + C_2 = 30 \quad \rightarrow \quad C_2 = 30 + 25m^2 g
\]
Therefore,
\[
y(t) = -5mgt - 25m^2 g e^{-0.2t/m} + 30 + 25m^2 g
\]
\[
= 5(6 - mgt) + 25m^2 g(1 - e^{-0.2t/m}).
\]
Solve \(y(t) = 0 \) for \(t \) now to find when the mass hits the floor.
\[
0 = 5(6 - mgt) + 25m^2 g(1 - e^{-0.2t/m})
\]
Plug in \(m = 0.25 \) and \(g = 9.81 \) and then graph the function on the right side versus \(t \). The curve crosses the \(t \)-axis in two places: \(t \approx -1.866 \) and \(t \approx 3.628 \). We require a positive number, so we choose the second time. Calculate \(v(3.628) \) to determine the velocity of the mass when it hits the floor.

\[
v(3.628) \approx -5mg(1 - e^{-0.2\cdot 3.628/m}) \approx -11.59 \text{ meters/s}
\]

Part (b)

Return to equation (1).

\[
y(t) = -5mgt - 25m^2ge^{-0.2t/m} + C_2
\]

Rather than \(y(0) = 30 \), apply the initial condition \(y(0) = y_0 \) to determine \(C_2 \).

\[
y(0) = -25m^2g + C_2 = y_0 \quad \rightarrow \quad C_2 = y_0 + 25m^2g
\]

As a result,

\[
y(t) = -5mgt - 25m^2ge^{-0.2t/m} + y_0 + 25m^2g
\]

\[
= y_0 - 5mgt + 25m^2g(1 - e^{-0.2t/m}).
\]

Set \(v(t) = -10, m = 0.25, \) and \(g = 9.81 \) and solve for \(t \).

\[
-10 = -5mg(1 - e^{-0.2t/m}) \quad \rightarrow \quad t \approx 2.113
\]

Now set \(y(t) = 0 \) and \(t \approx 2.113 \) and solve for \(y_0 \).

\[
0 = y_0 - 5mg(2.113) + 25m^2g[1 - e^{-0.2(2.113)/m}]
\]

\[
y_0 \approx 13.41 \text{ meters}
\]

This is how high the mass can be dropped from while having a velocity of \(-10 \) m/s when it hits the floor.

Part (c)

Use the same free-body diagram as before, but use \(k \) instead of 0.2.

\[
\begin{array}{c}
\text{Going Down} \\
y \\
\end{array}
\]

The minus sign in front of \(kv \) is due to the fact that the mass is moving down and +\(y \) points up. The new equation of motion can now be written.

\[
-kv - mg = m\ddot{y}
\]
Replace a_y with dv/dt and bring kv to the other side.

$$m \frac{dv}{dt} + kv = -mg$$

Divide both sides by m.

$$\frac{dv}{dt} + \frac{k}{m} v = -g$$

This is a first-order linear inhomogeneous ODE, so it can be solved by multiplying both sides by an integrating factor I.

$$I = \exp \left(\int \frac{k}{m} ds \right) = e^{kt/m}$$

Proceed with the multiplication.

$$e^{kt/m} \frac{dv}{dt} + \frac{k}{m} e^{kt/m} v = -ge^{kt/m}$$

The left side can be written as $d/dt(Iv)$ by the product rule.

$$\frac{d}{dt}(e^{kt/m} v) = -ge^{kt/m}$$

Integrate both sides with respect to t.

$$e^{kt/m} v = -\frac{mg}{k} e^{kt/m} + C_3$$

Divide both sides by $e^{kt/m}$.

$$v(t) = -\frac{mg}{k} + C_3 e^{-kt/m}$$

Since the mass is dropped from rest, the initial condition for v is $v(0) = 0$. Use it to determine C_3.

$$v(0) = -\frac{mg}{k} + C_3 = 0 \quad \rightarrow \quad C_3 = \frac{mg}{k}$$

Therefore, the velocity is

$$v(t) = -\frac{mg}{k} + \frac{mg}{k} e^{-kt/m}$$

$$= -\frac{mg}{k} (1 - e^{-kt/m}).$$

Replace v with dy/dt to get an ODE for the position.

$$\frac{dy}{dt} = -\frac{mg}{k} + \frac{mg}{k} e^{-kt/m}$$

Integrate both sides with respect to t.

$$y(t) = -\frac{mg}{k} t - \frac{m^2 g}{k^2} e^{-kt/m} + C_4$$

Use the initial condition $y(0) = 30$ to determine C_4.

$$y(0) = -\frac{m^2 g}{k^2} + C_4 = 30 \quad \rightarrow \quad C_4 = 30 + \frac{m^2 g}{k^2}$$

www.stemjock.com
Therefore,

\[y(t) = -\frac{mg}{k} t - \frac{m^2 g}{k^2} e^{-kt/m} + 30 + \frac{m^2 g}{k^2} \]

\[= 30 - \frac{mg}{k} t + \frac{m^2 g}{k^2} (1 - e^{-kt/m}). \]

Now we set the constraints to determine \(k \): plug in \(m = 0.25 \) and \(g = 9.81 \) and then set \(v(t) = -10 \) and \(y(t) = 0 \) to obtain a system of two equations for \(k \) and \(t \).

\[0 = 30 - \frac{(0.25)(9.81)}{k} t + \frac{(0.25)^2(9.81)}{k^2} (1 - e^{-kt/(0.25)}) \]

\[-10 = - \frac{(0.25)(9.81)}{k} (1 - e^{-kt/(0.25)}) \]

Plot these two curves in the \(tk \)-plane and note where they intersect to find the solution.

We see that the intersection occurs at \(k \approx 0.24 \) and \(t \approx 3.96 \). This means that the mass will hit the floor in 3.96 seconds if \(k \approx 0.24 \) kg/s. This is the lowest value of \(k \) that will result in a velocity of \(-10 \) m/s at the floor.

www.stemjock.com