Problem 30

Let \(v(t) \) and \(w(t) \) be the horizontal and vertical components, respectively, of the velocity of a batted (or thrown) baseball. In the absence of air resistance, \(v \) and \(w \) satisfy the equations

\[
\frac{dv}{dt} = 0, \quad \frac{dw}{dt} = -g.
\]

(a) Show that

\[
v = u \cos A, \quad w = -gt + u \sin A,
\]

where \(u \) is the initial speed of the ball and \(A \) is its initial angle of elevation.

(b) Let \(x(t) \) and \(y(t) \) be the horizontal and vertical coordinates, respectively, of the ball at time \(t \). If \(x(0) = 0 \) and \(y(0) = h \), find \(x(t) \) and \(y(t) \) at any time \(t \).

(c) Let \(g = 32 \text{ ft/s}^2 \), \(u = 125 \text{ ft/s} \), and \(h = 3 \text{ ft} \). Plot the trajectory of the ball for several values of the angle \(A \); that is, plot \(x(t) \) and \(y(t) \) parametrically.

(d) Suppose the outfield wall is at a distance \(L \) and has height \(H \). Find a relation between \(u \) and \(A \) that must be satisfied if the ball is to clear the wall.

(e) Suppose that \(L = 350 \text{ ft} \) and \(H = 10 \text{ ft} \). Using the relation in part (d), find (or estimate from a plot) the range of values of \(A \) that correspond to an initial velocity of \(u = 110 \text{ ft/s} \).

(f) For \(L = 350 \text{ and } H = 10 \), find the minimum initial velocity \(u \) and the corresponding optimal angle \(A \) for which the ball will clear the wall.

[TYPO: These should read \(L = 350 \text{ ft} \) and \(H = 10 \text{ ft} \).]

Solution

Below is a figure of the baseball with initial speed \(u \) at an angle \(A \).

\[\text{Part (a)}\]

Integrate both ODEs with respect to \(t \).

\[
\frac{dv}{dt} = 0 \quad \frac{dw}{dt} = -g
\]

\[
v(t) = C_1 \quad w(t) = -gt + C_2
\]

www.stemjock.com
Decompose the initial velocity vector into its components along the \(x \) - and \(y \)-axes.

Use these components to determine \(C_1 \) and \(C_2 \).

\[
\begin{align*}
v(0) &= C_1 = u \cos A \\
w(0) &= C_2 = u \sin A
\end{align*}
\]

Therefore,

\[
\begin{align*}
v(t) &= u \cos A \\
w(t) &= -gt + u \sin A.
\end{align*}
\]

Part (b)

Integrate the velocities to get the positions.

\[
\begin{align*}
x(t) &= \int v(t) \, dt = (u \cos A) t + C_3 \\
y(t) &= \int w(t) \, dt = -\frac{1}{2} gt^2 + (u \sin A) t + C_4
\end{align*}
\]

Use the initial conditions, \(x(0) = 0 \) and \(y(0) = h \), to determine \(C_3 \) and \(C_4 \).

\[
\begin{align*}
x(0) &= C_3 = 0 \\
y(0) &= C_4 = h
\end{align*}
\]

Therefore,

\[
\begin{align*}
x(t) &= (u \cos A) t \\
y(t) &= -\frac{1}{2} gt^2 + (u \sin A) t + h.
\end{align*}
\]

Part (c)

Let \(g = 32 \) \(\text{ft/s}^2 \), \(u = 125 \) \(\text{ft/s} \), and \(h = 3 \) \(\text{ft} \).

\[
\begin{align*}
x(t) &= (125 \cos A) t \\
y(t) &= -16t^2 + (125 \sin A) t + 3.
\end{align*}
\]
Below are graphs for $A = 10^\circ$, $A = 20^\circ$, $A = 30^\circ$, $A = 40^\circ$, $A = 50^\circ$, and $A = 60^\circ$ in purple, blue, green, yellow, orange, and red, respectively.

Part (d)

Set $x(t) = L$ and $y(t) \geq H$.

\[
L = (u \cos A)t
\]

\[
H \leq -\frac{1}{2}gt^2 + (u \sin A)t + h
\]

Since we just want a formula involving u and A, we will eliminate t. Solve the first equation for it.

\[
t = \frac{L}{u \cos A}
\]

Substitute this result into the inequality.

\[
H \leq -\frac{1}{2}g \left(\frac{L}{u \cos A} \right)^2 + (u \sin A) \left(\frac{L}{u \cos A} \right) + h
\]

Therefore,

\[
H \leq -\frac{gL^2}{2u^2} \sec^2 A + L \tan A + h.
\]

Part (e)

Set $H = 10$ ft, $L = 350$ ft, $g = 32$ ft/s2, $u = 110$ ft/s, and $h = 3$ ft in the result of part (d).

\[
10 \leq -\frac{(32)(350)^2}{2(110)^2} \sec^2 A + 350 \tan A + 3
\]

\[
-\frac{(32)(350)^2}{2(110)^2} (\tan^2 A + 1) + 350 \tan A - 7 \geq 0
\]

\[-\frac{19600}{121} \tan^2 A + 350 \tan A - \frac{20447}{121} \geq 0
\]
Below is a graph of the function on the left side versus \(\tan A \). We care about the part of the parabola that lies above the horizontal axis.

Use the quadratic formula to locate the zeros.

\[
-350 + \sqrt{350^2 - 4 \left(\frac{19600}{121} \right) \left(\frac{20447}{121} \right)} \leq \tan A \leq -350 - \sqrt{350^2 - 4 \left(\frac{19600}{121} \right) \left(\frac{20447}{121} \right)} \\
0.7283 \lesssim \tan A \lesssim 1.4324 \\
\tan^{-1} 0.7283 \lesssim A \lesssim \tan^{-1} 1.4324
\]

Therefore, in radians

\[0.6295 \lesssim A \lesssim 0.9613,\]

or in degrees

\[36.07^\circ \lesssim A \lesssim 55.08^\circ.\]

Part (f)

From the result of part (b), the position of the baseball is given by

\[x(t) = (u \cos A)t\]
\[y(t) = -\frac{1}{2} gt^2 + (u \sin A)t + h.\]

Set \(x(t) = L \) and \(y(t) = H \).

\[L = (u \cos A)t\]
\[H = -\frac{1}{2} gt^2 + (u \sin A)t + h.\]

Solve the first equation for \(t \)

\[t = \frac{L}{u \cos A}\]

and then substitute it into the second equation.

\[H = -\frac{1}{2} g \left(\frac{L}{u \cos A} \right)^2 + (u \sin A) \left(\frac{L}{u \cos A} \right) + h\]
\[= -\frac{gL^2}{2u^2 \cos^2 A} + L \tan A + h\]
Solve for \(u \).

\[
\frac{gL^2}{2u^2 \cos^2 A} = L \tan A + h - H
\]

\[
\frac{gL^2}{2u^2} = L \tan A \cos^2 A + (h - H) \cos^2 A
\]

\[
\frac{1}{u^2} = \frac{2}{gL^2} [L \sin A \cos A + (h - H) \cos^2 A]
\]

\[
u = \sqrt{\frac{gL^2}{2L \sin A \cos A + (h - H) \cos^2 A}}
\]

\[
u = \sqrt{\frac{gL^2}{2L \sin A \cos A + 2(h - H) \cos^2 A}}
\]

\[
u = \sqrt{\frac{gL^2}{L \sin 2A + 2(h - H) \cos^2 A}}
\]

Plug in \(g = 32 \text{ ft/s}^2 \), \(L = 350 \text{ ft} \), \(H = 10 \text{ ft} \), and \(h = 3 \text{ ft} \).

\[
u = 200\sqrt{7}(25 \sin 2A - \cos^2 A)^{-1/2}
\] \hspace{1cm} (1)

Differentiate \(u \) with respect to \(A \) and then set it equal to zero to find the values of \(A \) that extremize \(u \).

\[
\frac{du}{dA} = -100\sqrt{7}(25 \sin 2A - \cos^2 A)^{-3/2}[50 \cos 2A - 2 \cos A(- \sin A)] = 0
\]

\[
-100\sqrt{7}(25 \sin 2A - \cos^2 A)^{-3/2}(50 \cos 2A + 2 \sin A \cos A) = 0
\]

\[
50 \cos 2A + 2 \sin A \cos A = 0
\]

\[
50 \cos 2A + \sin 2A = 0
\]

\[
50 \cos 2A = - \sin 2A
\]

\[
2500 \cos^2 2A = \sin^2 2A
\]

\[
2500 \cos^2 2A = 1 - \cos^2 2A
\]

\[
2501 \cos^2 2A = 1
\]

\[
\cos^2 2A = \frac{1}{2501}
\]

\[
\cos 2A = \pm \frac{1}{\sqrt{2501}}
\]

\[
2A = \left\{ \pm \cos^{-1} \frac{1}{\sqrt{2501}}, \pm \cos^{-1} \frac{-1}{\sqrt{2501}} \right\}
\]

The two minus signs can be discarded because they don’t result in values of \(A \) between 0 and 90°.

\[
2A = \left\{ \cos^{-1} \frac{1}{\sqrt{2501}}, \cos^{-1} \frac{-1}{\sqrt{2501}} \right\}
\]
As a result, the optimal angles that extremize u are

$$A = \left\{ \frac{1}{2} \cos^{-1} \frac{1}{\sqrt{2501}}, \frac{1}{2} \cos^{-1} \frac{-1}{\sqrt{2501}} \right\} \approx \{0.775399, 0.795397\}.$$

Plug these values of A into equation (1) to find out the initial speeds associated with these angles.

$$u(A \approx 0.775399) \approx 106.937$$
$$u(A \approx 0.795397) \approx 106.894$$

Therefore, the minimum initial speed that a baseball can have to get to (L, H) is about 106.894 ft/s, and the angle from the horizontal it has to have is 0.795397 radians, or 45.57°.