Problem 14

In each of Problems 13 through 16, solve the given initial value problem and determine how the interval in which the solution exists depends on the initial value y_0.

$$y' = 2ty^2, \quad y(0) = y_0$$

Solution

Method Using the Chain Rule

$$y' = 2ty^2$$

Divide both sides by y^2.

$$\frac{y'}{y^2} = 2t$$

The left side can be written as $d/dt(-1/y)$ by the chain rule.

$$\frac{d}{dt} \left(-\frac{1}{y}\right) = 2t$$

Integrate both sides with respect to t.

$$-\frac{1}{y} = t^2 + C_1$$

Apply the initial condition now to determine C_1.

$$-\frac{1}{y_0} = C_1$$

So then the previous equation becomes

$$-\frac{1}{y} = t^2 - \frac{1}{y_0}.$$

Therefore,

$$y(t) = -\frac{1}{t^2 - \frac{1}{y_0}}$$

$$= \frac{1}{y_0 - t^2}$$

$$= \frac{y_0}{1 - y_0t^2}.$$

Note that the solution blows up in a finite amount of time if y_0 is positive, specifically

$$1 - y_0t^2 = 0 \quad \rightarrow \quad t = \pm \sqrt{-\frac{1}{y_0}}.$$

No such thing occurs, though, if y_0 is not positive.
Method By Separating Variables

\[\frac{dy}{dt} = 2ty^2 \]

Solve the ODE by separating variables.

\[\frac{dy}{y^2} = 2t \, dt \]

Integrate both sides.

\[-\frac{1}{y} = t^2 + C_2 \]

Apply the initial condition now to determine \(C_2 \).

\[-\frac{1}{y_0} = C_2 \]

So then the previous equation becomes

\[-\frac{1}{y} = t^2 - \frac{1}{y_0} \]

Therefore,

\[y(t) = -\frac{1}{t^2 - \frac{1}{y_0}} \]

\[= \frac{1}{y_0 - t^2} \]

\[= \frac{y_0}{1 - y_0 t^2} \]

According to Theorem 2.4.2, a unique solution to

\[y' = f(t, y), \quad y(t_0) = y_0 \]

exists in some interval \(t_0 - h < t < t_0 + h \) within \(\alpha < t < \beta \), provided that \(f \) and \(\partial f / \partial y \) are continuous in a rectangle \(\alpha < t < \beta, \gamma < y < \delta \) that contains \((t_0, y_0)\). In this exercise

\[f(t, y) = 2ty^2 \quad \text{and} \quad \frac{\partial f}{\partial y} = 4ty. \]

Both \(f \) and \(\partial f / \partial y \) are continuous everywhere except where the solution for \(y \) blows up. If \(y_0 > 0 \), then a unique solution exists in an interval within

\[-\sqrt{\frac{1}{y_0}} < t < \sqrt{\frac{1}{y_0}}, \]

and if \(y_0 \leq 0 \), then a unique solution exists in an interval within

\[-\infty < t < \infty. \]