Problem 20

In each of Problems 17 through 20, draw a direction field and plot (or sketch) several solutions of the given differential equation. Describe how solutions appear to behave as \(t \) increases and how their behavior depends on the initial value \(y_0 \) when \(t = 0 \).

\[y' = t - 1 - y^2 \]

Solution

The direction field is the vector field

\[\langle dt, dy \rangle = \left\langle 1, \frac{dy}{dt} \right\rangle dt = \langle 1, t - 1 - y^2 \rangle dt. \]

Below in red are the field vectors, and in blue are possible solution curves to the ODE, depending on the initial condition \((t_0, y_0)\). The solution curves lie tangent to the field vectors at every point and never intersect.

Assuming an initial condition of the form \(y(0) = y_0 \), the solution will tend to \(y = -\infty \) if \(y_0 \lesssim -0.02 \) and tend to \(y = \sqrt{t - 1} \) if \(y_0 \gtrsim -0.02 \).