Problem 31

In each of Problems 28 through 31, the given equation is a Bernoulli equation. In each case solve it by using the substitution mentioned in Problem 27(b).

\[
dy/dt = (\Gamma \cos t + T)y - y^3,
\]

where \(\Gamma \) and \(T \) are constants. This equation also occurs in the study of the stability of fluid flow.

Solution

Bring the term with \(y \) to the left side.

\[
y' - (\Gamma \cos t + T)y = -y^3
\]

Divide both sides by \(y^3 \).

\[
y^{-3}y' - (\Gamma \cos t + T)y^{-2} = -1
\]

(1)

Make the substitution \(u = y^{-2} \) and differentiate both sides of it with respect to \(t \) to find what \(y' \) is in terms of this new variable.

\[
\frac{du}{dt} = (-2)y^{-3} \cdot \frac{dy}{dt}
\]

Divide both sides by \(-2\).

\[
-\frac{1}{2} \frac{du}{dt} = y^{-3}y'
\]

Substitute this result along with \(u = y^{-2} \) into equation (1).

\[
-\frac{1}{2} \frac{du}{dt} - (\Gamma \cos t + T)u = -1
\]

Multiply both sides by \(-2\).

\[
\frac{du}{dt} + 2(\Gamma \cos t + T)u = 2
\]

This ODE can be solved by multiplying both sides by an integrating factor \(I \).

\[
I = \exp \left(\int 2(\Gamma \cos s + T) \, ds\right) = e^{2(\Gamma \sin t + Tt)}
\]

Proceed with the multiplication.

\[
e^{2(\Gamma \sin t + Tt)} \frac{du}{dt} + 2(\Gamma \cos t + T)e^{2(\Gamma \sin t + Tt)}u = 2e^{2(\Gamma \sin t + Tt)}
\]

The left side can be written as \(d/dt(\text{Iu}) \) by the product rule.

\[
\frac{d}{dt} \left[e^{2(\Gamma \sin t + Tt)}u \right] = 2e^{2(\Gamma \sin t + Tt)}
\]

Integrate both sides with respect to \(t \).

\[
e^{2(\Gamma \sin t + Tt)}u = \int^t e^{2(\Gamma \sin s + Ts)} \, ds + C
\]

www.stemjock.com
Divide both sides by the exponential function to solve for \(u \).

\[
u(t) = \int_t^t 2e^{2(\Gamma \sin s + Ts)} \, ds + C \]

Now that \(u \) is solved for, replace it with \(y^{-2} \) and solve for \(y \).

\[
y^{-2} = \int_t^t 2e^{2(\Gamma \sin s + Ts)} \, ds + C
\]

\[
y^2 = \int_t^t 2e^{2(\Gamma \sin s + Ts)} \, ds + C
\]

Therefore,

\[
y(t) = \pm \frac{e^{\Gamma \sin t + Tt}}{\sqrt{\int_t^t 2e^{2(\Gamma \sin s + Ts)} \, ds + C}}.
\]

Note that the lower limit of integration is arbitrary; \(C \) will be adjusted to account for whatever choice we make.