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Problem 31

In each of Problems 25 through 31, find an integrating factor and solve the given equation.(
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Hint: See Problem 24.

Solution

This ODE is not exact at the moment because
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To solve it, we seek an integrating factor µ = µ(x, y) such that when both sides are multiplied by
it, the ODE becomes exact.
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Since the ODE is exact now,
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Expand both sides.
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Following the hint, assume that µ is dependent on xy: µ = µ(xy).
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Let z = xy and solve this ODE by separating variables.
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Integrate both sides.
lnµ = ln z + C

Exponentiate both sides.
µ = (z)eC

Taking eC to be 1, an integrating factor is

µ = z = xy.

Multiply both sides of the original ODE by xy.

(3x2y + 6x) + (x3 + 3y2)
dy

dx
= 0

Because it’s exact, there exists a potential function ψ = ψ(x, y) that satisfies

∂ψ

∂x
= 3x2y + 6x (1)

∂ψ

∂y
= x3 + 3y2. (2)

Integrate both sides of equation (1) partially with respect to x to get ψ.

ψ(x, y) = x3y + 3x2 + f(y)

Here f(y) is an arbitrary function of y. Differentiate both sides with respect to y.

ψy(x, y) = x3 + f ′(y)

Comparing this to equation (2), we see that

f ′(y) = 3y2 → f(y) = y3.

As a result, a potential function is

ψ(x, y) = x3y + 3x2 + y3.

Notice that by substituting equations (1) and (2), the ODE can be written as

∂ψ

∂x
+
∂ψ

∂y

dy

dx
= 0. (3)

Recall that the differential of ψ(x, y) is defined as

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy.

Dividing both sides by dx, we obtain the fundamental relationship between the total derivative of
ψ and its partial derivatives.

dψ
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With it, equation (3) becomes
dψ

dx
= 0.

Integrate both sides with respect to x.

ψ(x, y) = C1

Therefore,
x3y + 3x2 + y3 = C1.
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This figure illustrates several solutions of the family. In red, orange, yellow, green, blue, and
purple are C1 = −10, C1 = −5, C1 = −1, C1 = 1, C1 = 5, and C1 = 10, respectively.
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