Problem 8

In each of Problems 5 through 10, draw a direction field for the given differential equation and state whether you think that the solutions are converging or diverging.

\[y' = -ty + 0.1y^3 \]

Solution

The direction field is a two-dimensional vector field that shows what the direction of the solution is at every point in a region. Every solution to the differential equation is a curve drawn such that the direction field vectors are tangent to it at every point.

\[\langle dt, dy \rangle = \left(1, \frac{dy}{dt}\right) dt = \langle 1, -ty + 0.1y^3 \rangle dt \]

Figure 1: In red are the direction field vectors and in blue are possible solutions to the differential equation, depending what the initial condition is. Solutions with initial conditions below \(y \approx 2.4 \) and above \(y \approx -2.4 \) appear to converge as \(t \to \infty \), but solutions with initial conditions above \(y \approx 2.4 \) and below \(y \approx -2.4 \) appear to diverge as \(t \to \infty \).

www.stemjock.com