Problem 11

In each of Problems 9 through 16, find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior as \(t \) increases.

\[6y'' - 5y' + y = 0, \quad y(0) = 4, \quad y'(0) = 0 \]

Solution

Since this is a linear homogeneous constant-coefficient ODE, the solution is of the form \(y = e^{rt} \).

\[y = e^{rt} \quad \rightarrow \quad y' = re^{rt} \quad \rightarrow \quad y'' = r^2 e^{rt} \]

Substitute these expressions into the ODE.

\[6(r^2 e^{rt}) - 5(re^{rt}) + e^{rt} = 0 \]

Divide both sides by \(e^{rt} \).

\[6r^2 - 5r + 1 = 0 \]

\[(3r - 1)(2r - 1) = 0 \]

\[r = \left\{ \frac{1}{3}, \frac{1}{2} \right\} \]

Two solutions to the ODE are \(y = e^{t/3} \) and \(y = e^{t/2} \), so the general solution is

\[y(t) = C_1 e^{t/3} + C_2 e^{t/2}, \]

a linear combination of the two. Differentiate it once with respect to \(t \).

\[y'(t) = \frac{C_1}{3} e^{t/3} + \frac{C_2}{2} e^{t/2} \]

Apply the two initial conditions now to determine \(C_1 \) and \(C_2 \).

\[y(0) = C_1 + C_2 = 4 \]

\[y'(0) = \frac{C_1}{3} + \frac{C_2}{2} = 0 \]

Solving the system of equations yields \(C_1 = 12 \) and \(C_2 = -8 \). Therefore,

\[y(t) = 12e^{t/3} - 8e^{t/2} \]

Take the limit of \(y(t) \) as \(t \to \infty \).

\[\lim_{t \to \infty} y(t) = \lim_{t \to \infty} (12e^{t/3} - 8e^{t/2}) \]

\[= \lim_{t \to \infty} 4e^{t/2}(3e^{-t/6} - 2) \]

\[= \lim_{t \to \infty} 4e^{t/2}(-2) \]

\[= \lim_{t \to \infty} -8e^{t/2} \]

This solution diverges to \(-\infty\) as \(t \to \infty \).
$y(t) = 12 e^{t/3} - 8 e^{t/2}$