Problem 14

In each of Problems 7 through 16, find the general solution of the given differential equation.

\[9y'' + 9y' - 4y = 0 \]

Solution

Since this is a linear homogeneous constant-coefficient ODE, the solution is of the form \(y = e^{rt} \).

\[\begin{align*}
 y &= e^{rt} \\
 y' &= re^{rt} \\
 y'' &= r^2 e^{rt}
\end{align*} \]

Substitute these expressions into the ODE.

\[9(r^2 e^{rt}) + 9(re^{rt}) - 4(e^{rt}) = 0 \]

Divide both sides by \(e^{rt} \).

\[9r^2 + 9r - 4 = 0 \]

\[(3r + 4)(3r - 1) = 0 \]

\[r = \left\{ \begin{array}{l}
 -\frac{4}{3} \\
 \frac{1}{3}
\end{array} \right\} \]

Two solutions to the ODE are \(y = e^{-4t/3} \) and \(y = e^{t/3} \), so the general solution is

\[y(t) = C_1 e^{-4t/3} + C_2 e^{t/3}, \]

a linear combination of the two.